
J Vector Borne Dis 46, June 2009, pp. 85–99

Review Articles

A review of plague persistence with special emphasis on fleas

Jeffrey Wimsatta & Dean E. Bigginsb

aCenter for Comparative Medicine and Department of Biology, University of Virginia, Charlottesville; bU.S. Geological Survey,
Fort Collins Science Center, Fort Collins, U.S.A.

Abstract

Sylvatic plague is highly prevalent during infrequent epizootics that ravage the landscape of western
North America. During these periods, plague dissemination is very efficient. Epizootics end when
rodent and flea populations are decimated and vectored transmission declines. A second phase
(enzootic plague) ensues when plague is difficult to detect from fleas, hosts or the environment, and
presents less of a threat to public health.

Recently, researchers have hypothesized that the bacterium (Yersinia pestis) responsible for plague
maintains a continuous state of high virulence and thus only changes in transmission efficiency
explain the shift between alternating enzootic and epizootic phases. However, if virulent transmission
becomes too inefficient, strong selection might favor an alternate survival strategy. Another plausible
non-exclusive hypothesis, best supported from Asian field studies, is that Y.  pestis persists (locally)
at foci by maintaining a more benign relationship within adapted rodents during the long expanses
of time between outbreaks.  From this vantage, it can revert to the epizootic (transmission efficient)
form. Similarly, in the United States (US), enzootic plague persistence has been proposed to develop
sequestered within New World rodent carriers. However, the absence of clear support for rodent
carriers in North America has encouraged a broader search for alternative explanations. A telluric
plague existence has been proposed. However, the availability of flea life stages and their hosts
could critically supplement environmental plague sources, or fleas might directly represent a low-
level plague reservoir.

Here, we note a potentially pivotal role for fleas. These epizootic plague vectors should be closely
studied with newer more exacting methods to determine their potential to serve as participants in or
accomplices to a plague persistence reservoir.
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Introduction

Bubonic plague is caused by Yersinia pestis, a gram-
negative coccobacillar bacterium that evolved within
the last 1500–20,000 years by genetic divergence
from the more ubiquitous rodent enteric pathogen
Yersinia pseudotuberculosis1. Yersin was the first to
characterize this member of the Enterobacteriaecae2

during the third plague pandemic in the late 19th cen-
tury while it ravaged the thriving port of Hong Kong.
Flea infested peridomestic rodents emanating from
that pandemic unleashed a strain of surprisingly ho-
mogeneous (clonal), highly virulent Y. pestis
orientalis3 into North America around 19004, and
into South America about the same time. Since its ar-
rival, sylvatic plague has readily adapted to and pro-
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foundly influenced wild American rodent popula-
tions5,6. It has gradually migrated eastward over
time, into the mid-western United States (US, ~102°
west longitude)4,7.

The American emergence of plague over 100 years
ago reflects its versatility in adapting to a new set of
vectors and hosts. We note some apparent limitations
of popular hypotheses to explain plague persistence
and revisit erstwhile explanations for plague persis-
tence that deserve reconsideration. In particular, the
potentially pivotal role of the flea as a vector and
host-supported enzootic reservoir could help explain
the persistence of sylvatic plague between infrequent
epizootics.

In the classic description of sylvatic plague, some
mammalian species, especially rodents, are believed
to act as primary hosts, and to serve as persistent dis-
ease carriers8,9. Secondary hosts were described in
the Old World and represent ancillary rodent sources
of plague ultimately dependent on the primary
host10. A third group consists of susceptible species
that act as incidental bystanders. These include hu-
mans and selected carnivores (e.g. canids and felids).
This latter group does not directly support long-term
disease persistence (dead end hosts), but becomes in-
fected principally during epizootics and may contri-
bute to the environmental burden of infective
organisms.

American rodents susceptible to epizootic plague
include prairie dogs (Cynomys)7,11–14, wood
rats (Neotoma)15, and some ground squirrels
(Spermophilus)16–18. Moderately susceptible rodents
include voles, many mice, other ground squirrel spe-
cies, and rabbits (Lagomorpha). Relatively resistant
species include kangaroo rats (Dipodomys), certain
populations of mice, and selected carnivore
species19,20.

We derive an operational definition of sylvatic
plague phrases more suited to describing its natural
history as observed in the western US. There is con-
siderable ambiguity from extensive use of these

terms in the literature and because western plague
might behave differently from its longer adapted
Asian progenitor. An epizootic is the classic mani-
festation of plague where there is a progressive but
rapid demise of large numbers of susceptible hosts
and bystander species in large areas. This disease
phenotype is often readily identified based on pre-
cipitous local declines in susceptible animal popula-
tions. Epizootic plague is relatively easily detected
with standard diagnostic methods. A plague reservoir
is a source of plague that nutritionally sustains Y.
pestis to survive for extended periods without de-
stroying its own food source. Such a reservoir in this
context is not just a means of transport or source of
infection (e.g. vector, environmental contaminant,
etc.). Any organism can exist in a dormant state
(“dormant plague”) for some period without repro-
duction or significant growth, but this is an interim
situation created by circumstances that do not further
its long-term survival, reproduction or progressive
dissemination. Similarly, overwintering is a typical
dormant plague state, since infected rodents that arise
in the spring become septic and die21,22. Enzootic
plague as used here continues to rely on interactions
with hosts and fleas, and refers to plague persistence
(detected at the same location over time) that might
be accompanied by low-level flea or host disease.
However, sustainable populations of hosts and fleas
are likely outcomes of this definition, when key nu-
trients, the organism and the flea need for growth and
reproduction (dietary enrichment) are provided by
successive hosts. Improved definitions should
emerge when the mechanisms for the enduring suc-
cess of plague are better understood.

The spread of epizootic plague

Because epizootic plague is the phase of greatest
concern to human health, the easiest to detect, and the
most visible part of the plague cycle, it is also the best
studied. Precipitous host declines, plague detection
from hosts and fleas (antibodies and culture), and
evidence of flea blocking are signature events of
epizootics7,9,23. Epizootics spread as Y. pestis is dis-
seminated by blocked fleas as they regurgitate over-
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whelming doses of organisms into the host which
becomes septicemic and dies, forcing blocked starv-
ing fleas to seek the next available host.  New fleas
become blocked (“competent”) from septicemic
hosts, perpetuating the epizootic24. The block itself
is a growing clot teeming with organisms that lodges
primarily within the proventriculus obstructing upper
gastrointestinal transit and intestinal alimentation,
leading to regurgitation, starvation and repeated feed-
ing attempts. Some flea species (e.g. rat fleas, Xenop-
sylla cheopis) block more readily than others. Even
so, blocking appears to require critical numbers of
bacteria. At sylvatic plague sites inhabited by prairie
dogs, the dominant fleas (Oropsylla  species) are in-
efficient blockers, and host blood concentrations of
106–7. Y.  pestis organisms per milliliter (50–500 or-
ganisms in 50 μl) are required for progression of
blocking. This appears to constrain block formation
to bites from septic (moribund) hosts within 42 h of
death25–27. Although blocked fleas do not always
transmit Y.  pestis from bites26,28, competent flea
transmission29 at the population level effectively
amplifies epizootics28,30–32 most likely in a (vector,
host) density-dependent manner.

The importance of understanding the
enzootic phase

Diatlov33  has recounted the failure of decades-long
Soviet plague eradication initiatives based on host
and flea elimination. Of all the strategies, only plac-
ing land into agricultural production stopped plague
recrudescence from established foci. While host and
flea control methods blunt or even prevent epizoot-
ics in the short-term34, these methods are not practi-
cal to remove plague from the large expanses of
remote land where it resides in the western US. In the
face of threats of bioterrorism, a more virulent bio-
engineered variant of the plague bacillus could be in-
troduced into natural foci. Thus, it is critical to know
if vectored virulence is the primary overriding driver,
possibly facilitating the spread of new genetic sub-
variants. In contrast, vectored virulence driver  might
be lost if it confers reduced fitness during the en-
zootic plague phase35. From an ecological stand-

point, if low-level mortality is an attribute of enzootic
plague, keystone species (e.g. Cynomys) could be im-
pacted36, distorting normal trophic relationships
even without epizootics.

Quantitative multi-locus analyses support the exist-
ence of two Y.  pestis identities corresponding to the
two dominant phases. These consist of a rapidly dis-
persed epizootic form, and a more resilient, but ge-
netically diverse, persistence form37. Yersinia  pestis
mutability is also well-recognized38,39. Strains with
varied virulences are documented from native Asian
sources40 suggesting that resident forms with alter-
nate transmission strategies might exist at these foci.
In the western US, even starting with a limited rep-
ertoire of strains, given the short generation times
exhibited by most microbes, a century of evolution
acting on Y.  pestis provides ample time to resurrect
or introduce new capabilities, especially in a complex
natural environment41. In fact, a recent study com-
paring Y.  pestis and E.  coli found that they mutated
and introduced diversity at similar rates42.  The pro-
cess of incorporating of favorable mutations under
selection has even been used to hypothesize reduced
virulence and host adaptation43 suggesting likely Y.
pestis population heterogeneity.  Previously, Ameri-
can studies have emphasized research on destructive
epizootics, and may in part reflect the practical limi-
tations imposed when collecting quality enzootic
field isolates. Sometimes the distinction between en-
zootic and epizootic plague is difficult to make. For
example, Webb et al44, studying epizootic plague, re-
viewed literature and field data and concluded that
a temporal reservoir is required to model this disease.
Based on their description, they modeled recoveries
from epizootics (epizootic behaviour).

Explanations for the almost coincidental appearance
of plague epizootics over large areas seems to impli-
cate simultaneous eruptions from multiple sources,
perhaps facilitated by favourable weather. On a
smaller scale, spread from initial foci might involve
the movement of plague-infected fleas by “trans-
porter species” such as carnivores or ungulates45, or
by sequential host ferrying. For example, transfer of
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Y.  pestis up to 120 m was shown from labeled flea
studies46 while comparable rodent movements cov-
ered only half this distance, irrespective of habitat.
In the western US, plague resistant carnivores such
as coyotes (Canis latrans) frequently seroconvert to
plague47–54 indicating exposure, making them excel-
lent plague sentinels. Likewise, the swift fox (Vulpes
velox) was demonstrated to transit infected fleas and
possessed high Y.  pestis seroconversion rates55–57.
However, how long fleas survive on foraging carni-
vores, the resistance of these predators to disease,
their contact rates with prey, their territoriality, and
flea densities might be considered factors in evalu-
ating their contribution to plague spread and persis-
tence.

In the summer of 2005, simultaneous outbreaks of
epizootic plague occurred in several western  states
(e.g. Utah, Colorado and Montana), where outbreaks
were separated by hundreds of kilometers and encom-
passed a geographical area extending from Montana
to Texas (unpublished data). The timing and the dis-
tances between sites made flea transfer between sites
unlikely while long distance and short time separa-
tions precluded movement of Y.  pestis by even the
most mobile of native vertebrates. Large-scale mod-
els have been used to explain epizootic cycles of
plague within a region and trophic relationships are
a possible explanation58,59. However, these land-
scape models60,61 provide little direct insight into
local events, how epizootics start, where the organ-
ism originates, and how it survives. The presumed
density-dependency of epizootics on participants (e.g.
rodents and fleas) suggests that Y.  pestis might ben-
efit from trophic cascades mediated by weather
cycles.

Is plague always directing virulence toward
hosts and fleas?

Ewald62 has argued that pathogen virulence opti-
mizes to assure efficient transmission.  Therefore, ef-
ficient vectors require less host-virulent plague63,64,
whereas inefficient vectors further increasing host
virulence62 to infect yet more fleas. Lorange et al32

argued that inefficient plague transmission (e.g. in-
cluding blocking rates) would be sufficient to favor
the Y.  pestis virulence toward the host, while viru-
lence against the flea vector would be counterproduc-
tive unless virulence depends on blockage to make
plague transmission efficient. Presumably, such
blockage is a sufficient trade-off to warrant flea mor-
tality (i.e. a virulence maintenance hypothesis). Ap-
plied to western plague foci, the limited number of
flea species shown to block and low rate of blocking
in such species might favor increased virulence.
Bacot24 observed that partial blockage led to more
efficient transmission and prolonged flea survival.
This latter suggestion makes the flea a potential res-
ervoir, not just as a vector.  Eisen et al65 demonstrated
in the laboratory that Oropsylla efficiently transfers
Y.  pestis mechanically, without flea blockage, to
hosts. However, their model system still requires
access to septic hosts66.

One consequence of a penurious ever-virulent-roll-
ing-plague model is that Y.  pestis exists largely at the
mercy of events that determine flea and host popu-
lation numbers, such that epizootics would directly
couple to population dynamics. If alternatively, there
is some phase or form change where the organism
can persist in fleas or the environment, this would
provide an alternative to continued high host and flea
mortality between epizootic outbreaks, allowing flea
and host populations to recover. The resulting dy-
namics would be less driven by host and flea popu-
lation increases that permit epizootics.

The ability of Y.  pestis to adhere within the flea’s
gastrointestinal tract has been used to explain its
relatively recent divergence from Y. pseudotubercu-
losis67. While Y. pestis is tolerated by fleas, Y.
pseudotuberculosis causes fatal diarrhoea in them68.
One key to this adhesion appears to be the produc-
tion of Ymt, a flea intestinal adhesion factor (i.e.
phospholipase D—common in function to other bac-
teria)28. For example, Ymt inserted Y. pseudotuber-
culosis resided within X. cheopis up to 1 month
longer69. Similarly, the hemin storage gene is respon-
sible for proventricular adhesion. If mutated, it al-
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lows (hms-) Y. pestis to reside for extended periods
in the flea midgut70. As a strategy of the organism,
repressing the hms+ phenotype might allow Y.  pes-
tis retention within the flea as a commensal where
nutrition is available and host virulence could be re-
tained in the absence of flea mortality. Temperature
responsive genes71,72  can be unleashed by the organ-
ism, and in turn, toxin is released within the flea,
converting it to a vector. Plague mediated changes
include biofilm elaboration, mucosal spine sticki-
ness, and proventricular blockage25,73,74.

The number of plague organisms increase within
fleas in response to feeding, and numbers of Y.  pes-
tis temporarily decrease during digestion, then in-
crease again75. Retention of bacteria was largest in
the proventricular area, although mid-gut organisms
were noted, as was Y.  pestis excretion76. Vectored
transmission might not assure persistence of plague
by itself, especially during the enzootic phase. For
example, Salmonella was effectively transmitted by
fleas77, but this does not suggest Salmonella exhib-
its a higher fitness from vectored over enteric trans-
mission.

Four major hypotheses of plague persistence

Gage and Kosoy3 have described four hypotheses to
explain the continued existence of sylvatic plague.
None of these hypotheses can be viewed as mutually
exclusive; one or more might be occurring at one or
multiple sites simultaneously or in succession. One
hypothesis suggests Y.  pestis exerts its influence
largely as a continuous propagation event of varying
velocity (enzootic periods punctuated by irregular
brief epizootic periods), dependent on a continuous
supply of naive hosts and vector fleas. This hypoth-
esis is largely congruent with the virulence mainte-
nance hypothesis mentioned earlier.

The carrier host hypothesis: The second hypothesis
suggests epizootics die out and become separated by
long periods when the plague organism resides se-
questered within carrier hosts. This carrier state has
been attributed to at least one rodent species at each

plague focus. Moderate host susceptibility coupled
with field identification of host seroconversion in the
wake of outbreaks led to the suspected role of carrier
rodents as a key plague reservoir. Carrier hosts would
exhibit a propensity to harbor the organism in a se-
questered location within their bodies7,78,79, and later
become septicemic in response to some stressor; their
fleas, imbibing the organism under septic conditions,
would initiate a new epizootic. If rodent carriers re-
side at American plague foci, their existence has yet
to be established80. However, at least one Asian spe-
cies (the great gerbil, Rhombomys opimus) from
plague endemic areas has attributes that are reputed
to allow it to be a carrier as defined earlier81.

The telluric hypothesis: Another of Gage and
Kosoy’s hypotheses was recently revisited by French
researchers and emphasized the capability of Y.  pes-
tis to survive for extended periods in the burrow soil
or substrate during the largely occult inter-epizootic
period82,83. Indeed, Yersin2 reports in his seminal
work characterizing the etiology of plague his abil-
ity to culture the organism from deep within contami-
nated soil. Mollaret82 and Drancourt et al83

emphasized the importance of distinguishing fortu-
itous soil contamination and short-term survival from
long-term plague persistence, in which the organism
reproduces and completes its life cycle. A recent
study84 involving epizootic plague inoculation of
sterile soil showed the potential durability of the or-
ganism in soil substrate.  A long duration of survival
as a soil contaminant could indirectly support the
virulence maintenance.  In culture, the growth opti-
mum for Y. pestis is 28ºC, close to ambient tempera-
tures of many environments85. Studies of susceptible
prairie dogs from plague foci reveal little evidence
of seroconversion in the period between epizootics86.
Susceptible animals succumb to plague at relatively
low doses. However, if their carcasses remain under-
ground, relatively large amounts of organism could
contaminate the environment. Because proliferation
of Y.  pestis in the carcass is all but completed by
death, this retention of plague is better described as
dormant (contaminant) plague, than as a reservoir
form. Mechanistic details underlying Y. pestis reten-
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tion (if it exists), and its means for re-entry into the
active plague cycle remain speculative at best.

The flea reservoir hypothesis: The remaining hypoth-
esis of Gage and Kosoy will be the focus of the rest
of this review.  We consider adult and larval fleas as
potential reservoirs, and we discuss flea relationships
that could support the telluric hypothesis. If fleas
invariably died from blocking, their vector role would
seem to dominate any putative role as a reservoir.
Lorange et al32 revisited the blocking propensity of
Xenopsylla cheopis, and reported a maximum rate of
38% in this model species while many other species
block less readily. Bacot24, one of the original discov-
erers of flea blocking, and others25,75,87,88 have ob-
served protracted periods where infected fleas did not
block. Some fleas were capable of harboring the or-
ganism for up to 130 days25. Pollitzer89 suspected
avirulent Y.  pestis strains were responsible. Indeed,
high levels of host bacteremia alone do not assure flea
blockage25. Other factors such as temperature90, flea
age91 and flea gender92 influenced blocking effi-
ciency.

Traditional diagnostic results have not provided data
supportive of fleas as a definitive reservoir. For ex-
ample, fleas sampled inter-epizootically were largely
negative93, while plague is readily detected during
epizootics7,29,94–96. However, a recent study has
identified Y.  pestis in fleas at relatively high frequen-
cies from potential enzootic plague foci using a more
sensitive polymerase chain reaction (PCR) tech-
nique97.  While other methods should be applied to
assure the specificity of this finding, limited sensitiv-
ity of past assays could have profoundly biased pre-
vious results. For example, there is little data on the
ability of fleas to harbor small numbers of Y.  pestis
below the detection limits of traditional diagnostic
techniques (i.e. at low copy numbers).

A final possibility is that the adult flea directly or
indirectly through larval provisioning provides an-
other enduring reservoir for Y. pestis. If as Lorange
et al32 found, Xenopsylla cheopis has a median sur-
vival post-infection of 14 days before blocking but

the host only survives for two days, fleas might be
better reservoirs than their mammalian hosts. Thus,
even in the penurious virulence maintenance trans-
mission model mentioned above, the flea might serve
in a reservoir capacity to some degree to keep epizoot-
ics rolling forward. For fleas to serve as a reservoir
during the enzootic phase, the lack of seroconversion
in susceptible hosts has to be explained while these
fleas continue to feed on them. First, bacteria above
the intestine might be few in number or rarely regur-
gitated. One might envision the organism behaving
as a typical enteric microbe of the mid-gut or proven-
triculus of the flea under these circumstances, where
it is maintained in low numbers as it competes with
other resident flora for nutrients and attachment sites.
In this case, living in the proventriculus at low levels
could reduce competition, and could help explain why
Y.  pestis prefers to colonize this site. Second, the adult
flea might not reliably harbor the organism for ex-
tended periods, but when feeding might support the
alimentation of Y.  pestis in the host burrow substrate
(telluric) or as it settles in the intestinal tract of flea
larvae feeding on adult excreta and the contaminated
substrate. In either case, the reasons for low host
seroconversion rates would be similar to those pro-
posed for telluric plague.

Adult fleas as candidate plague carriers

The flea genus Oropsylla7,78,98 is commonly asso-
ciated with American rodents (especially Cynomys)
involved in plague outbreaks and especially in hu-
man plague infections99. Kartman et al100 observed
that Oropsylla harbored Y.  pestis for extended peri-
ods, based on the observation that plague was iso-
lated one year after an epizootic decimated the host
population. However, there was no definitive evi-
dence that epizootic transmission of Y.  pestis was no
longer occurring. Several researchers working in
Asia have provided similar accounts of prolonged
infected flea longevity3. Fleas of the genera
Catallagia, Echidnophaga, Hystrichopsylla,
Malareus and Thrassis (now Oropsylla) found in the
western US appear to block25,26,78,89,101–104 but a
putative role for them as a plague reservoir has not
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been studied using refined techniques, nor has their
response to plague been as carefully investigated as
the case for rat fleas26,28,105–107.

If fleas provision plague without vectoring, then the
size of flea populations and increased host transfer
rates could impact plague prevalence, thus, degree of
flea (and indirectly host) density dependence would
likely be observed, as for the virulence maintenance
model. For example, if plague carrying fleas de-
creased in number, provisioning of flea nests would
diminish the number of Y.  pestis shed and available
and harbored in the nest substrate. In time, a disrup-
tion in the flea life cycle could allow plague to die out
until a new colonization event occurred. Flea host
shifts have been observed in response to plague epi-
zootics102, but loss of host fidelity might adversely
impart burrow dependent plague survival.  Similarly,
host-to-host compatibility might constrain social
contacts that could dampen plague transfer108. The
energetic costs of feeding on the wrong host might
influence host fidelity109. Host deaths or increased
flea fecundity create local population booms that
could necessitate a loss of host and nest fidelity and
cause increased larval mortality110.

Flea life stages as candidates for plague
persistence

Russian investigators have hypothesized that fleas
imbibing from the mucous membranes of hibernat-
ing marmots provided the necessary conditions for
the genesis of Y.  pestis111,112. In their opinion, the
organism evolved and survived in close association
with fleas. Reminiscent of this coexistence, the lon-
gevity of both Y.  pestis infected fleas estimated from
laboratory studies26,113–119 suggest that with suffi-
cient high quality food provisioning, fleas might live
to 220120, 396, or 411121 days (Ctenophthalmus
breviatus, Citellophilus tesquorum, Neopsylla setosa
respectively). Unfortunately, little field longevity data
exist21, and even less is known about the longevity of
infected or uninfected fleas from the western US.

Once feeding122 and reproduction begins123–125,

adult fleas require frequent meals126,127 to avoid des-
iccation, malnutrition and death128. Adult fleas lib-
erally pass partially digested host blood to their brood
larvae129,130. Dependence of early life stages on host
nests is typical of fleas that spread plague127. Com-
pared to ticks, fleas produce considerably fewer eggs
at a time130–133, possibly suggesting that in fleas, pa-
rental provisioning may significantly improve larvae
survival to adulthood.  As might be expected, young
adults produce more robust offspring125 and lay more
eggs134 than older fleas.  Larvae grow rapidly, going
through several instars before pupating. From the
resting imago (pupal) stage, adult emergence is trig-
gered by host cues, assuring food is nearby129,131,135.
The intensity of host effects on flea reproduction
seems to vary with the host and their differential tol-
erance of flea densities136. Finally, the rapacious lar-
vae and adult fleas each are suspected to compete with
others in their cohort137 and this in turn likely impacts
adult survival123.

Several investigators104,138–140 have shown that
adult fleas excrete Y.  pestis, and that even parenter-
ally infected fleas harbor the organism for extended
periods without apparent ill-effects141, 142. Flea lar-
vae are indiscriminate consumers that supplement the
blood they imbibe from adult excreta.  For example,
cat fleas grow more rapidly on mixed diets than on
host blood alone143. Larval fleas of various species
may indiscriminately consume plague from the nest
environment87,113,131, dead animal carcasses, in-
jured adult fleas and other arthropods87,144. Dead
fleas and burrow substrate sustained Y.  pestis (typi-
cally L-forms) for up to 427 days145, making con-
sumption of Y.  pestis by flea larvae likely.

Certain growth factors are auxotrophic to Y.  pestis
when added to its growth medium (e.g. thiamin, pan-
tothenic acid79,85,146,147); and many such nutrients
can be derived from host blood147,148.  Thus, even if
Y.  pestis is genetically depauperate149 and behaves
as an obligate host parasite, as some have sug-
gested79,147, the dependence of larvae on adult flea
sanguineous excreta could significantly support Y.
pestis in the environment. Finally, a flea and host
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recapture study performed under semi-natural con-
ditions suggested strong flea to host fidelity150. Flea
to host preferences in part reflect flea nutritional re-
quirements113,151 and host blood digestibility152.

The needs of immature fleas and
abiotic influences

The role of early flea life stages in plague persistence
has not beeninvestigated for sometime, systematic
study is required especially in sylvatic fleas. This hy-
pothetical persistence strategy is appealing because
pupating larvae could passively harbor small num-
bers of Y.  pestis that are then retained within envi-
ronmentally durable pupae, until adult forms emerge.
Molyneux87 and Bacot153 observed that larval rat
fleas (X.  cheopis, N.  fasciatus) passed Y.  pestis by
defecation, and using culture methods on triturated
fleas, found that plague was undetectable after two
days. If the hosts used as a blood source to rear the
larvae possessed antibodies against Y.  pestis, this
could conceivably contribute to the rapid clearances
observed.  In addition, these older studies relied prin-
cipally on culture media without antibiotics to con-
trol the growth of contaminants, and the methods
employed could have lacked sufficient sensitivity to
detect low-grade infections. Larval plague isolates,
like substrate-adapted forms121, might be challeng-
ing to culture154, 155. Similarly, they might be chal-
lenging to amplify if PCR reaction inhibitors are
retained in the sample matrix. At present, definitive
identification of the plague organism still relies
heavily on orthogonal testing employing some com-
bination of bioassay, PCR, culture, and host chal-
lenge, supplemented with biochemical testing, direct
immunofluorescence, bacteriophage typing or host
serological screening156. However, applying these
rigorous criteria for all potential isolates, and particu-
larly for low-level, contaminated, or fastidious
(atypical) plague samples has become a major chal-
lenge limiting the detection of novel forms.  Captur-
ing these novel isolates if they exist may require the
development of more specialized high throughput
PCR methods97, unique sequence targeting, the col-
lection of inaccessible fresh field samples, or the de-

velopment of new culture enrichment techniques to
produce sufficient quantities for further assessment.

In general, plague foci in the western US exist in
xeric semi-desert environments, and plague
recrudesces in epizootic form in response to moder-
ately dry seasons and temperatures157–159, but with
sufficient moisture to sustain hosts, fleas and the
plague bacillus below ground. On the other hand, ex-
cessive moisture160 adversely affects fleas. When
coupled with a high organic load, excessively wet
conditions nurture molds (and possibly other flea
pathogens161) that diminish larval survival in rodent
nests162, a matter requiring some vigilance during
captive flea colony management126. Numbers of pre-
daceous mesostigmatid mites were inversely related
to flea numbers161.  Not surprisingly, since Y.  pes-
tis does not form spores, it favors life underground163

over inhabiting surface soils164. A recent microbio-
logical survey recovered a very low prevalence of
Yersinia species from surface soils165, yet burrow
contamination and retention appears a likely
source166.

Flea abundance relies on the effect of both abiotic
(e.g. moisture, seasonality, darkness, environmental
stability etc.) and biotic (e.g. organic load) inputs167.
Flea larvae are highly susceptible to desiccation168,
acquiring water principally from adult excreta, but
also reduce detrimental moisture losses and tempera-
ture swings by living deep underground169,170. Fine
sandy nesting substrates have the potential to abrade
the waxy epicuticle of flea larvae, increasing water
loss and larval mortality123. Soil composition likely
represents a series of trade-offs depending on the flea
species in question. For example, desert-adapted
fleas fared better in sand substrate than in loess-like
sediments171. Cocooned flea stages are more resis-
tant to desiccation124; cocooned imagoes are viable
for many months, and more resistant to freezing,
under conditions where larvae are killed131.

Conclusions

While transmission efficiency and differential flea
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blocking might help to explain shifts from enzootic
to epizootic plague, we hypothesize that fleas poten-
tially offer some important advantages for provision-
ing and preserving a plague reservoir that extends
beyond their well-studied, and established role as
plague vectors. Fleas in this context would enhance
plague survival during enzootic periods by non-vec-
tored and vectored provisioning, while also serving
as key transmission amplifying vectors during epi-
zootics. Fleas living on animals, within rodent bur-
rows or while completing their growth stages, might
significantly contribute to plague persistence.
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