
INTRODUCTION

Viral hemorrhagic fever (VHF) is caused by RNA
viruses belonging to families: Flaviviridae, Bunyaviridae,
Filoviridae and Arenaviridae1. VHF is mild to severe and
a life threatening disease in humans caused by exposure
to infected animal or vector reservoir host. In the past
decade, there have been sporadic outbreaks of many
emerging and remerging zoonotic viral diseases in the
South-East Asia Regional (SEAR) countries (Bangladesh,
Bhutan, Democratic People’s Republic of Korea, India,
Indonesia, Maldives, Myanmar, Nepal, Sri Lanka, Thai-
land, and Timor-Leste)2.

Severity and clinical presentation of VHFs may sig-
nificantly change according to several factors related to
the causative agent, host factors and epidemiological fea-
tures. Commonly, patients with VHFs exhibit fever and
coagulation abnormalities that may progress towards dis-
seminated intravascular coagulation, multiorgan failure
and shock eventually leading to death3. It is difficult to
conduct human clinical trials for therapeutic/prophylac-
tic drugs or vaccines because of inadequate intervention
strategies and relative rarity and volatility of VHF out-
breaks. Therefore, animal models that can recapitulate
human disease are essential for the development of ef-
fective antivirals and vaccines. Ideally, the spectrum of
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disease in an animal model should resemble that of the
human. Reservoir hosts are generally not suitable animal
models since they do not respond to their respective viral
infections in a manner analogous to the human response.
VHF animal model should be based on the primary in-
fection of macrophages, monocytes and viral dissemina-
tion to other organs and tissues. Most types of VHFs are
associated with significant liver disease which likely origi-
nates either from circulatory failure or through the spread
of infection via the blood stream to Kupffer cells with
subsequent spill-over into parenchymal cells4.

All VHFs are major public health problems in SEAR
countries which include dengue hemorrhagic fever (DHF),
Kyasanur forest disease (KFD), Crimean-Congo hemor-
rhagic fever (CCHF), Hantavirus hemorrhagic fever
(HHF) and Nipah virus (NiV) disease (Table 1). Signifi-
cant efforts have been made to develop animal models to
characterize disease progression, determine correlates of
protection and to screen therapeutics and vaccines. The
aim of the present article is to review currently available
animal models for hemorrhagic fevers caused by viruses
of immense public health importance in the SEAR coun-
tries.

Animal models for Flaviviral hemorrhagic fever
Dengue hemorrhagic fever (DHF): Dengue is the
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most prevalent arthropod-borne viral illness in humans
and > 50 million cases of dengue are estimated each year.
Dengue virus (DENV) is a member of the Flaviviridae
family. DHF is a self-limiting, though incapacitating, fe-
brile illness accompanied by retro-orbital pain, headache,
skin rash, bone and muscle pain. In case of DHF, hemor-
rhagic manifestations, low platelet count and signs of
vascular leakage, such as increased hematocrit level or
pleural effusion have been reported5. Carefully controlled
experiments performed in relevant animal models are
needed to explore the dynamics of hematological dys-
function and other factors potentially involved in dengue
disease.

Macaque model was developed by Halstead et al6 by
subcutaneous inoculation of DENV in rhesus monkeys.
Infected macaques revealed low platelet count. Similarly,
viremia-post subcutaneous (s.c.) inoculation in rhesus
monkeys with wild type dengue 1, 2 and 3 was demon-
strated in another study7. Further, Martin et al8 demon-
strated viremia and antibody responses in green monkeys
(Chlorocebus aethiops sabaeus) inoculated with DENV
making potential model for evaluation of novel candi-
dates for dengue vaccines. Infection with DENV in mar-
mosets revealed clinical signs of disease and changes in
hematological and biochemical parameters9. DENV in-

oculated by intravenous (i.v.) route in Rhesus macaques
produced hemorrhagic and coagulopathy signs, reminis-
cent of hemorrhagic manifestations seen in humans, mak-
ing them potentially useful for pre-clinical testing of thera-
peutic interventions specifically targeting DENV
associated coagulopathy10. The role of dengue virus (DV)
specific cell-mediated responses in non-human primate
(NHP) models has received relatively less attention, al-
though some researchers reported recognition of non-
structural proteins in addition to viral structural compo-
nents by both CD4+ and CD8+ T-cells11. However, such
responses have been difficult to detect in DNA vaccine
immunized monkeys, even in those that show protection
from challenge12. DV infection of monkeys elicits a vig-
orous innate response leading to activation and marked
shifts in circulating subsets of T, NK, and NK-T cells in
the marmoset model13.

Dengue disease has been extensively studied in mu-
rine models. Host genetic factors and immune compo-
nents influencing the susceptibility have been studied in
various inbred and immunocompromised genetically
modified mouse strains respectively. Besides that, viral
factors were also explored in the form of attempts to adapt
the virus in mouse or testing the susceptibility of differ-
ent virus strains isolated from patients and mosquitoes.
Inter-strain variation in manifestation of symptoms in mice
has been observed depicting influence of host genetic fac-
tors on susceptibility to DENV214. Studies on severe com-
bined immunodeficient (SCID) mice reconstituted with
human cells represent the most susceptible model to
DENV infection. Wu et al15 reported that engrafting SCID
mice with human cells as targets for DENV infection,
yields limited success partly because of low levels of
human engraftment. The involvement of liver cells in the
pathogenesis of DENV infection has been indicated by
abnormal liver function, pathological findings and detec-
tion of viral antigen in hepatocytes and Kupffer cells.
DENV could replicate in a human hepatocarcinoma cell
line (HepG2) and infectious particles were released into
the culture medium. Therefore, An et al16 established an
animal model for DV infection using SCID mice trans-
planted with a HepG2. At 7–8 wk post-transplantation
with HepG2, grafted mice infected intraperitoneally with
DEN2 produced clinical symptoms like thrombocytope-
nia, prolonged partial thromboplastin time; and increased
hematocrit, blood urea nitrogen; and tumor necrosis fac-
tor-α (TNF-α) were also observed in the paralyzed mice.
This model is suitable for the pathogenesis of dengue vi-
rus diseases16. Experimental infection of non-obese dia-
betic/severe combined immunodeficiency (NOD/SCID)
mice xenografted with human CD34+ cells led to clinical

Table 1. Geographical distribution of dengue hemorrhagic fever,
Kyasanur forest disease, Crimean-Congo hemorrhagic fever,
Hantavirus fever and Nipah virus fever in South-East Asia

Regional (SEAR) countries

S. No. SEAR countries Viral hemorrhagic fever

1. India Dengue hemorrhagic fever,
Kyasanur forest disease, Crimean-
Congo hemorrhagic fever,
Hantavirus fever, Nipah virus
fever

2. Bangladesh Dengue hemorrhagic fever, Nipah
virus fever

3. Bhutan Dengue hemorrhagic fever

4. Nepal Dengue hemorrhagic fever

5. Indonesia Dengue hemorrhagic fever,
Hantavirus fever

6. Maldives Dengue hemorrhagic fever

7. Sri Lanka Dengue hemorrhagic fever,
Hantavirus fever

8. Myanmar Dengue hemorrhagic fever

9. Thailand Dengue hemorrhagic fever,
Hantavirus fever

10. Timor-Leste Dengue hemorrhagic fever

11. Democratic People’s Hantavirus fever
Republic of Korea
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signs of DF as seen in humans (fever, rash, and thromb-
ocytopenia)17–18. Infection of humanized NOD-SCID
IL2R gamma (null) mice with different strains (represent-
ing the four genotypes) of DEN2 virus could induce the
development of disease similar to that observed in pa-
tients. This attribute makes this mouse model ideal for
the study of dengue pathogenesis and the evaluation of
antivirals and virus attenuation19.

Significant development in dengue model research
could be attributed to susceptibility of AG129 mice to
DEN (lacking α/β-IFN and γ-IFN receptor genes). Intra-
peritoneal administration of mouse-adapted DEN2 virus
was uniformly lethal in AG129 mice (which lacks α/β-
IFN and γ-IFN receptor genes)20. Besides, the use of ge-
netically modified mouse strains, attempts to adapt virus
in mouse were successful. Generation of a mouse-adapted
DENV strain enabled development of a mouse model that
manifested signs of severe dengue reminiscent of human
disease, including vascular leak. Thus, this model of sys-
temic dengue disease may constitute a more satisfactory
approach for testing vaccine efficacy21.

AG129 mice, though partially immunocompromised,
develop a broadly cross-reactive and long-lasting anti-
body response to DENV. Sequential DENV infection in
this mouse model resulted in decreased viral load of the
subsequently infecting serotype22. AG129 mice infected
with DENV had high levels of circulating NS1 and anti-
NS1 antibodies, making it a good model to study the role
of NS1 and anti-NS1 antibodies in vivo23. AG129 mouse
model is one of the models that permits infection by all
four serotypes of DENV, supports replication in relevant
cell and tissue types comparable to human infection and
allows antibody-mediated protection and enhancement of
DENV infection24. The AG129 model has proven to be
useful in the testing of a live-attenuated vaccine and in
testing the immune response to non-structural proteins in
a chimeric vaccine25. DENV infection of AG129 mice
reproduces key features of human disease. Mice depleted
of T-cells developed signs of disease, but recovered after
secondary DENV infection. Overall, protective cross-re-
active antibodies are secreted by both long-lived plasma
cells and memory B-cells, and both cross-reactive B-cells
and T-cells provide protection against a secondary het-
erotypic DENV infection26–27. The attribute of differen-
tial virulence of virus strains isolated from mosquitoes
and patients was explored in various inbred strains of mice
in an attempt to develop models for different clinical fea-
tures of DENV infection. Nonmouse-adapted DEN2 vi-
rus strain (Accession number D2Y98P) is highly infec-
tious in AG129 mice. Infection with a high dose of
D2Y98P induced cytokine storm, massive organ damage

and severe vascular leakage leading to hemorrhage and
rapid death of the animals at the peak of viremia. Infec-
tion with D2Y98P provides a new platform for testing of
drugs and vaccines28.

A/J strain, Balb/c or B6 mice inoculated with DEN2
virus displayed thrombocytopenia and anti-platelet anti-
body. These mouse models could be effectively used to
study the pathogenicity of dengue virus29. MON501 is a
dengue strain found to be neurovirulent in mice. Two
genomic-length cDNA clones (TB62 and TB203) were
constructed by point mutation of pDVWS501 (genomic-
length cDNA clone of DEN2 virus) wherein, Lys at posi-
tion 62 was mutated to Glu and Asn at position 203 mu-
tated to Asp. The properties of these mutants demonstrated
that E62 and E203 are determinants of suckling mice
neurovirulence30–32.

Balb/c mice infected with dengue virus serotype 2
(non-neuroadapted), by intraperitoneal and intravenous
routes provide useful information of morphological as-
pects of dengue virus infection33–34. An inbred mouse
model in which mice develop signs of human DENV-
induced disease is needed to be investigated for protec-
tion or pathogenesis of DENV infections, and to test the
efficacy of DENV vaccines and antiviral35. Balb/c mouse
model developed by Paes et al36 revealed DENV-specific
pathogenesis, viz. liver damage, hyperplasia in Kupffer
cells, increased white blood cell (WBC) counts, thromb-
ocytopenia and an increase in hematocrit level reminis-
cent of vascular leak viremia36–38.

Shresta et al21, developed a murine model relevant to
DHF. A novel DEN strain, D2S10, was generated by al-
ternately passaging a non-mouse-adapted DEN strain
between mosquito cells and mice, thereby mimicking the
natural transmission cycle of the virus between mosqui-
toes and humans. In this model, mice infected with D2S10
showed increased serum level of tumor necrosis factor α
(TNF-α); one of the key mediators of severe DEN in-
duced disease in vivo. This model provides mechanistic
insights into DEN-induced disease21. Orozco et al39 de-
veloped DENV2 strain (D220) by 10 additional cycles of
subcutaneous inoculation of mice with supernatant from
infected mosquito cells.

AG129/Pas mice lacking interferon α/β or γ recep-
tors were inoculated subcutaneously with DENV. Initial
cellular tropism of DENV in these mice was similar to
that reported in humans40. In dengue tropism mice model,
DENV2 non-structural protein 3 (NS-3) supports roles
for infected phagocytes, hepatocytes and endothelial cells
in the pathogenesis of severe dengue41. However, the
majority of responses were derived from the highly con-
served non-structural proteins NS-3 and NS-5. This novel
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murine model can be used for investigation of T cell-
mediated immune mechanisms relevant to vaccine de-
sign42.

Immunocompetent mice inoculated intra-dermally
with DENV2 strain 16681 develop hemorrhage locally
or systemically. Intra-dermally DENV2 strain 16681 in-
jected in immunocompetent C57BL/6 mice leads to en-
dothelium damage and hemorrhage development43-45.
Intraperitoneal inoculation of DENV1 in immunocom-
petent C57BL/6 mice presented signs of dengue disease,
viz. thrombocytopenia, spleen hemorrhage, liver damage
and increase in production of IFN-γ and TNF-α
cytokines46.

Using mice deficient in iNOS, phox47 and apocy-
nin; reactive nitrogen species (RNS) and reactive oxygen
species (ROS) are important for hemorrhage development
after infection by DENV. This mouse model offers the
opportunity to test potential dengue vaccines and thera-
peutics to treat dengue hemorrhage and to test hemor-
rhage induction potentials of dengue viral strains43.

Swiss albino mice were immunized with a single dose
of infective DEN2 virus and different markers of both
branches of the induced adaptive immunity. Immunized
mice were also inoculated with the depleting monoclonal
antibodies anti-CD4 or anti-CD8. Only depletion with
anti-CD8 decreased the level of protection to 50% when
compared to that reached in the non-depleted mice. The
mouse model contributed to understand the role of cellu-
lar immune response in protection against dengue virus47.

The virulence of DENV3 isolates in a mouse model
was assessed by intracerebral (i.c.) inoculation with geno-
types I and III. DENV3 has the propensity to cause neu-
rological disease in mice while the genotype III is associ-
ated with asymptomatic infection in mice. This mouse
model is a way to study the biology of DENV3 isolates
and neurovirulence of the different genotypes of DENV48.
Mice inoculated with DENV-specific antibodies can suf-
ficiently increase severity of disease so that a mostly non-
lethal illness becomes a fatal disease resembling human
DHF49–50.

Mota and Rico-Hesse51 have developed a new model
of DF in immuno-deficient mice transplanted with hu-
man stem cells from umbilical cord blood. These mice
inoculated with DENV2 showed similar signs of dengue
disease as found in humans (fever, viremia, erythema and
thrombocytopenia). This was the first valid and relevant
model for studying dengue fever pathogenesis in humans.
DENV are transmitted to humans by the bite of Aedes
aegypti or Aedes albopictus (Diptera: Culicidae) mosqui-
toes. Humanized mouse model of DEN; mice transplanted
with human hematopoietic stem cells, produced signs of

DENV disease. This was the first animal model useful
for evaluation of human immunity to DENV infection
after mosquito inoculation52.

In DENV3 inoculated IFN-γ (-/-) mice, enhanced le-
thality preceded by severe disease manifestation and vi-
rus replication was seen. Lack of IFN-γ production was
associated with diminished nitric oxide-synthase 2
(NOS2) expressions and higher susceptibility of NOS2
(-/-) mice to DENV3 infection53. Anxiety-like behaviour
and expression of pro-inflammatory cytokines and pro-
apoptotic caspase-3 intra-cranially was seen in C57BL/6
mice inoculated with DENV3. This model produced anxi-
ety-like behaviour, hippocampal inflammation and neu-
ronal apoptosis associated with DENV3 infection in the
central nervous system54.

Dengue virus strain (D2Y98P) upon intraperitoneal
(i.p.) or subcutaneous (s.c.) administration in immuno-
compromised mice increased vascular permeability, in-
testine damage, liver dysfunction, transient lymphopenia,
which are the hallmarks of severe DEN in patients. This
novel mouse model of DEN associated vascular leakage
will contribute to a better understanding of DEN patho-
genesis and represents a relevant platform for testing novel
therapeutic treatments and interventions55–56. Advantages
and disadvantages of animal models for dengue are shown
in Table 2.

Kyasanur forest disease (KFD)
Kyasanur forest disease virus (KFDV) was first iso-

lated during an outbreak in 1957 in the Kyasanur forest
area of the Shimoga district in Karnataka state of India57.
Serological evidence of KFDV was found in the Andaman
Island, during 1988–89 indicating the presence of KFDV
or closely related virus in the area distant from the en-
demic foci58. Since 1950s, KFDV or closely related vi-
ruses could be present in other parts of India, such as
parts of Kutch district in Gujarat state and forested re-
gions of West Kolkata in West Bengal state59–60. KFDV
causes severe to fatal disease in primates of species
Macaca radiata and Presbytis entellus, often associated
with the onset of outbreak in humans. Infection in pri-
mates primarily involves gastrointestinal and lymphoid
tissues61. In other nonhuman primates (monkey) infected
with KFDV, encephalitic lesions have been observed62.

Suckling mice are commonly used for isolation and
propagation of virus by intracerebral inoculation of se-
rum or tissue suspensions from wild primates or patients58.
Sub-adult Swiss albino mice (weanling, 21 days old) in-
fected with KFDV via subcutaneous (s.c.) or intraperito-
neal (i.p.) routes also developed the disease63–64. Further,
studies using Swiss albino mice revealed that 2–3 days
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old mice injected by i.p. route succumbed to disease in
4–6 days, while 3–4 wk old mice died in 5–7 days. Un-
like humans and non-human primates, adult mice infected
i.c. or i.p. developed histological signs of encephalitis65.
Suckling (2–3 days old) and weanling Swiss albino mice
succumb to infection, 5–7 days post-inoculation by i.p.
route. However, adult mice infected by i.c. or i.p. route
develop histological signs of encephalitis without mor-
tality. Therefore, though not ideal, this model has been
used to assess KFD vaccine efficacy. Infected mice of
any age do not show histological abnormalities in the liver
or spleen65. Some wild-caught rodents may be potential
natural reservoirs for the virus and might not develop dis-
ease66.

Contrary to mouse studies, necropsy of Macaca ra-
diata (bonnet macaques) infected with KFDV demon-
strated KFD virus-specific gastrointestinal and lymphoid
lesions. Viral antigens were found in small and large in-
testine, spleen and lymph nodes. Thus, M. radiata seems
to be an excellent model to study human disease caused
by KFD virus similar to infected patients64.

Animal models for Bunyaviral hemorrhagic fever
Crimean-Congo hemorrhagic fever (CCHF): CCHF

is a notifiable disease to the World Organization for Ani-
mal Health and the WHO and notification is not related
to the consequences of its spread within the animal popu-
lation, but rather to the risk posed by zoonotic potential67.
CCHF is an acute, highly contagious and life-threatening

disease. The virus belongs to the genus Nairovirus in the
Bunyaviridae family. CCHF was described by a physi-
cian in Tajikistan in 1100 AD in a patient with hemor-
rhagic manifestations. Crimean hemorrhagic fever (CHF)
was first described as a clinical entity in 1944–1945 when
about 200 Soviet military personnel were infected in dev-
astated Crimea after Nazi invasion68. Later, it became
evident that the causative agent was identical to a virus
isolated from a patient in Congo in 1956 and the name
Crimean-Congo hemorrhagic fever (CCHF) was
adopted69. Recently, outbreaks have been reported from
India70–71. CCHF virus (CCHFV) circulates in nature in
a tick-vertebrate-tick cycle, mainly cattle, sheep, goats
and hares. The virus is transmitted to humans primarily
by ticks of the genus Hyalomma. CCHF progresses rap-
idly with high fever, malaise, severe headache and gas-
trointestinal symptoms69–70.

Mouse model, deficient in the STAT-1 signaling was
found to be highly susceptible to infection with mortality
within 3 to 5 days. After CCHFV inoculation, mice ex-
hibited fever, leukopenia, thrombocytopenia and highly
elevated liver enzymes. Rapid viremic dissemination and
extensive replication in visceral organs (mainly in liver
and spleen), increased pro-inflammatory cytokines in the
blood, delayed immune cell activation and intensive lym-
phocyte depletion were observed in the mouse model.
Hence, infection study in this model offers an in-depth in
vivo analysis of CCHFV pathophysiology72–73. Varying
levels of liver lesions are observed in CCHFV infected

NHP

Mice

Route of inoculation : s.c.

Route of inoculation: i.v.

SCID

AG129

Balb/c

Low platelet counts, viremia and neutralizing
antibody response

Typical clinical features; hemorrhages and
coagulopathy

Possibility of studying the human immune
response in vivo; useful model to study the role of
cross-reactive T-cells in sequential infections. 

AG129 mice were a promising small animal model
for DEN virus vaccine trials.

The activation of innate immune response is at least
partially responsible for mortality in DEN2 virus
infection, and in line with this concept, anti-TNF
treatment significantly reduces the mortality rates.
Therefore, inbred 4-wk old Balb/c mice are useful
models to study the immune activation in host during
DEN2 virus infection.

Low level of replication restricted to
lymphoid tissues; No overt clinical disease

Not natural route of infection

These mice are unable to produce the
innate immune response; Not relevant for
tropism and pathogenesis studies

Table 2. Advantage and disadvantages of animal models for dengue

Animal models Advantages Disadvantages
for dengue
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patients74. The presence of virus in the spleen of patients
is also consistent with CCHFV infected IFN-α/βR-/-
mice75. Adult mice missing the type I interferon (IFN)
receptor (IFNAR) were found susceptible to CCHFV and
developed an acute disease with fatal outcome76.

Hantaviral hemorrhagic fever
Hantaviruses (genus Hantavirus, family

Bunyaviridae) are rodent-borne viruses. They are the caus-
ative agents for hemorrhagic fever. A mild form of HFRS
(HF with renal syndrome) called nephropathia epidemica
(NE) is caused by Puumala virus (PUUV)77. The term
HF with renal syndrome (HFRS) is commonly used when
referring to such diseases caused primarily by Hantaan
(HTNV), Seoul (SEOV), Dobrava (DOBV) and Puumala
(PUUV) viruses. HFRS is predominantly a Eurasian dis-
ease that varies in severity, with HTNV and DOBV in-
fections being the most lethal and PUUV infections hav-
ing the lowest mortality rates78–79. Old World hantaviruses
cause a form of HF that is characterized by clinically sig-
nificant kidney disease as well as other more variable dis-
ease signs and symptoms80.

A parallel to the human diseases has been observed
in experimental infection of hamsters with Andes virus
(ANDV). This South American hantavirus, was found to
be highly lethal in adult Syrian hamsters. The character-
istics of the disease in hamsters closely paralleled to that
observed in patients. Those included the incubation pe-
riod, symptoms of rapidly progressing respiratory distress,
pathological changes in lungs, in the form of pulmonary
edema and pleural effusion in humans81. In addition to
the uniform lethality of the ANDV model that makes it
amenable to drug and vaccine efficacy studies, many simi-
larities to human HPS exist including short time to death
following the onset of symptoms, laboured breathing,
pleural effusion, pathology of the liver and spleen, and
hypotension78, 81. Capillary leakage is central to hantaviral
diseases. Cynomolgus macaques infected with wild-type
Puumala hantavirus produced viral RNA, nucleocapsid
protein in kidney, spleen and liver tissues. Inflammatory
cell infiltrations and tubular damage has been seen in the
kidneys. Thus, this model is reliable to study hantavirus
infection76.

Animal models for Nipah virus disease
Nipah virus (NiV) infection is an emerging infectious

disease of public health importance in the South-East Asia
Region. NiV is enveloped, negative-sense, single-stranded
RNA virus in the family Paramyxoviridae, genus
Henipavirus. The name of the virus and disease caused
by it is derived from the village name “Sungai Nipah” in

Malaysia, where the first human case was detected.
First Nipah disease outbreak occurred in Malaysia and
Singapore in 1998 and 1999 respectively82. Subsequent
outbreaks occurred in Bangladesh during winter seasons
in 2001, 2003 and 200483–86. During January and Febru-
ary 2001, an outbreak of febrile illness associated with
altered sensorium occurred in Siliguri, West Bengal,
India87.

Although, small percentage of Nipah cases were
found to be asymptomatic or presented mild disease most
diagnosed clinical cases present with acute neurological
signs. The initial symptoms are flu-like with high fever,
headache and myalgia. In patients who develop encepha-
litis, the symptoms may include drowsiness, disorienta-
tion, convulsions and/or coma. Nausea and vomiting can
also be seen. Less often, patients develop respiratory signs,
which may include acute respiratory distress syndrome.
Septicemia, bleeding from the gastrointestinal tract,
renal impairment and other complications can occur in
severely ill patients88.

Wong et al89, reported golden hamster (Mesocricetus
auratus) model that appears to reproduce the pathology
and pathogenesis of acute human Nipah infection. Ham-
sters infected by intranasal or intraperitoneal routes with
Nipah virus died within 9 to 29 days or 5 to 9 days, re-
spectively. Pathological lesions were most severe and
extensive in the hamster brain. Vasculitis, thrombosis,
multinucleated endothelial syncytia were found in blood
vessels of multiple organs. Viral antigen and RNA were
localized in both vascular and extravascular tissues89.
NiV initially replicated in the upper respiratory tract epi-
thelium. The development of neurological signs coincided
with disruption of the blood brain barrier (BBB) and ex-
pression of tumor necrosis alpha (TNF-α) and interleukin
1β (IL-1β). In addition, interferon-inducible protein 10
(IP-10) was identified as playing an important role in NiV
pathogenesis. This model provided novel information on
the development and progressions of NiV clinical dis-
ease and identifies specific cytokines and chemokines that
serve as important targets for treatment90. The antiviral
efficacy of ribavirin and 6-aza-uridine were tested in ham-
sters infected with a lethal dose of Nipah virus. The ac-
tivity of these small-molecule inhibitors was compared
with that of the interferon inducer poly(I)-poly(C12U).
Poly(I)-poly(C(12)U), (3 mg/kg of body weight) dose
daily from the day of infection to 10 days post-infection,
prevented mortality in 5 of 6 infected animals91. The com-
bination of chloroquine with ribavirin treatment of NiV
infection in golden hamster model showed antiviral ac-
tivity. Ribavirin delayed death from viral disease in NiV-
infected hamsters by approximately five days92. Nipah
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virus glycoproteins (G and F) when expressed as
vaccinia virus recombinants induced an immune response
in hamsters which protected against a lethal challenge
by Nipah virus93. NiV infected Syrian hamsters had
accelerated virus replication, pathology and death com-
pared to NiV infected animals. This model can be used to
study NiV-pathogenesis, transmission and counter mea-
sures that could be used to control outbreaks94.

In ferret model, a cross-reactive neutralizing human
monoclonal antibody; m102.4, targeting the henipavirus
G-glycoprotein was evaluated in vivo as a potential thera-
peutic agent. All ferrets that received m102.4 10 h fol-
lowing a high dose oral-nasal Nipah virus challenge were
protected from disease while all controls died. This study
was the first successful post-exposure passive antibody
therapy for Nipah virus using a human monoclonal anti-
body95.

Guinea pigs intraperitoneally inoculated with NiV
produced a disease with considerable resemblance to the
disease in humans but with reduced pulmonary involve-
ment and marked infection of urinary bladder and the fe-
male reproductive tract96.

Two groups of two adult cats each were inoculated
subcutaneously with either 500 or 5000 tissue culture in-
fective dose(s) (TCID50) of NiV. Inoculated cats with both
doses developed clinical disease 6 to 9 days post-infec-
tion. These results indicated that the cat provides a con-
sistent model for acute NiV infection and associated
pathogenesis97.

Infection of squirrel monkeys by i.v. injection was
followed by high death rates associated with acute neu-
rologic and respiratory illness, and viral RNA and anti-
gen production98. African green monkey (AGM) model
provided reliable platform for evaluation of either pas-
sive and active immunization or therapeutic strategies for
human use99.

CONCLUSION

Many of hemorrhagic fever causing viruses are con-
sidered as potential bioweapons owing to their aerosoliza-
tion capacity. No effective vaccine and specific antivirals
are available to combat these infections. Animal models
provide important tools for the study of in vivo viral rep-
lication and pathogenesis modulated by the host immu-
nity. Animal experiments can afford us solid scientific
basis for exploration of antiviral drugs and vaccines de-
velopment.

In this review, we have discussed the contributions
of animal models made in the study of DHF, KFD, CCHF,
HHF and NiV host range and pathogenesis. It is hypoth-

esized that the close genetic relationship between primates
and humans, and the presence of a comparable immune
responses make NHPs the best models for studying den-
gue virus. AG129 mice are highly susceptible to dengue,
replicate virus to high titers and display vascular leakage.
The NOD/SCID/IL-2Rγ mice reconstituted with human
CD34+ cells are infrequently used but have the greatest
potential as future mouse models. In KFD, non-human
primate model (Bonnet macaque) is more accurate model
with human disease; while rodent (mice) model do not
replicate with human disease. Adult mice, rats, hamsters,
guinea pigs, rabbits, cattle, sheep, goats, horses and NHPs
are susceptible to CCHFV infection but do not develop
sign of disease100. CCHF disease progression in these
animals differs from human CCHF, which limits the use
of these models to study CCHF disease progression. In
HHF disease; adult Syrian hamster exhibit disease simi-
lar to that observed in HHF patients. Unlike the mice,
hamster, cat squirrel and monkey models of NiV infec-
tion; severe respiratory pathology, neurological disease
and generalized vasculitis could be manifested in NiV
infected African green monkey (AGM). These attributes
make AGM an accurate model for NiV infection. Goals
of experimental virology research are not only to include
improvement of existing screening methods but also de-
velopment of new screening methods for antivirals and
vaccines. We are anticipating that research on animal
models of viral hemorrhagic fever will continue to pro-
vide insights into the pathology of pathogenesis, genetic
and environmental influence.
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