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ABSTRACT

Background & objectives: Malaria and dengue fever are the most common mosquito-borne diseases in the Southeast
Asia region (SEAR). We analysed a temporal record of annual cases of malaria and dengue fever from 1985–2009
in SEAR.

Methods: Data of dengue and malaria cases were obtained from WHO website for the period from 1985–2009.
El-Nino Southern Oscillation (ENSO) fluctuation data were obtained from NOAA Climate Prediction Centre,
Maryland. The wavelet analysis was conducted to analyse the data.

Results: Results showed that multiyear cycles of malaria outbreaks appeared in 1986 and 1996, concomitant with
the timing of dengue cases at one year lag. The dynamics of both cases pronounce a regime shift in the 1999,
when the coupling between dengue and ENSO is also stronger. The statistical significance of this coupling is
evident from wavelet band-averaged cross power in 2–4 yr scale (95% confidence level).

Interpretation & conclusion: The present analysis suggests that the dengue incidence patterns in SEAR are periodic.
There is not much evidence of malaria and ENSO having periodic association in the region; however, dengue
fever and ENSO shows statistical significant cross-coherence in the 2–4 yr wavelet band and the results are
statistically significant in the last decade. This study also provides statistical evidence of geographical clustering
which quantitatively demonstrate the cross-country and cross-epidemic situations that exist across SEAR.
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surface temperature (SST) in the equatorial Pacific Ocean.
The ENSO controls local temperature and precipitation
worldwide. The ENSO is known to have wide-ranging
consequences on human health worldwide17–18. In this
connection, several studies have observed the impact of
ENSO on malaria and dengue in various countries19–24.

The cross-correlation, cross spectra and related quan-
tities provide information on possible links between dif-
ferent parameters25–26. In the present study, we assessed
the relationship between malaria and dengue cases in
SEAR. We also analyzed climate data, specifically ENSO,
and examined its statistical association with malaria and
dengue incidences. The wavelet analysis is a useful tool
to interpret multiscale, non-stationary time-series data27

and well suited for patterns of variability that change with
time, such as transient cycles, allowing the identification
of not only dominant periods but also their timing in the
epidemiological data28. The wavelet methods have been
widely used to analyse relationship between ENSO and
dengue incidence to identify time- and frequency-asso-
ciations29–30. These are known to be multiyear variations
in dengue incidence; however, their association with
ENSO has reported to be varying in different geographi-

INTRODUCTION

Malaria and dengue fever are mosquito-borne diseases
that severely affect public health worldwide1. These
are recognised as serious impediments to economic
and social development in the Southeast Asia region
(SEAR)2–12. The two diseases are prevalent in tropical
and subtropical countries. The mosquito vectors that trans-
mit malaria have their main habitats in the forests, hills,
foothills, irrigated wetland and rural periurban areas;
whereas the main habitats of dengue vector are man-made
breeding sources in urban areas. In SEAR, although cases
of concurrent infections are scarce13, statistical analysis
of the comparative distributions of the two diseases is not
well explored. It would be valuable to determine com-
mon periodic phenomenon between the two diseases. It
is well known that the warm and moist climate condi-
tions in the tropics are suitable for diseases like malaria
and dengue and ideal breeding conditions for mosquitoes
are provided during rainy seasons14–16. In this context, an
important climatic factor is the El nino-southern oscilla-
tion (ENSO) phenomenon. The ENSO is a periodic inter-
annual biphasic variation of atmospheric pressure and sea
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cal locations. For example, in Mexico, no association is
observed, whereas in Puerto Rico, statistically significant
correlation is reported between ENSO and dengue inci-
dence29. The wavelet analysis has been used to establish
associations between the multi-annual components of den-
gue incidence and ENSO in Thailand30. Although, many
of the wavelet based studies have analysed ENSO asso-
ciation with Asian countries, a comprehensive study on
SEA region is sparse. The present study is one of the first
attempts to explore malaria-dengue-ENSO statistical as-
sociation in the SEA region using the wavelets.

MATERIAL & METHODS

The set of data analysed in our work includes the time-
series of malaria and dengue reported cases which are
used to show epidemiological trends overtime. The SEAR
includes eleven countries namely, Bangladesh, Bhutan,
DPR Korea, India, Indonesia, Myanmar, Maldives, Nepal,
Sri Lanka, Thailand and Timor-Leste. The data on re-
ported cases of malaria and dengue fever in SEAR indi-
vidual countries were obtained from the World Health
Organization website. The total number of cases in SEAR
is the sum of all individual SEAR countries. All the data
used in the present work are annual and cover the period
from 1985–2009. The malaria cases from Maldives are
not included in the study as malaria is not a public health
problem there. Similarly, there are no reported cases of
dengue fever in Korea, hence, these are not included.

The data set contains time series of SST anomalies,
which are indicative of ENSO fluctuations. The data are
taken from the NOAA Climate Prediction Centre at the
website from: http://www.cpc.ncep.noaa.gov/data/.

Wavelet analysis
The wavelet analysis involves transformation of a data

series with a wavelet, a localized wave. The data are trans-
formed into the frequency domain, in which periodic
behaviour is more easily analysed. The wavelet transform
analysis provides a tool well suited to the study of
multiscale, nonstationary processes over finite spatial and
temporal domains and has found applications for time-
series signal detection and analysis. Continuous wavelet
transform is a common tool for analyzing localized inter-
mittent oscillations in a time-series. It is important to ex-
amine two time-series together. In particular, to examine
whether regions in a time frequency space with large com-
mon power have a consistent phase relationship and, there-
fore are suggestive of causality between the time-series.

For a discrete sequence, Xn, n = 0,…..,(N-1), the con-

tinuous wavelet transform (s) is defined as a convo-
lution of with a scaled and translated version of a wavelet
function ϕ

... (1)

where, *denotes the complex conjugate, δ t is the (sam-
pling) time interval between two consecutive points in
the time-series and s is the wavelet time scale which pro-
vides a measure of the width of ψ in time. We select for
the present work the Morlet function.

... (2)

where, ω0 is a nondimensional frequency, taken equal to
six in order to satisfy the wavelet admissibility condi-
tion27, and η is a nondimensional time parameter. The
wavelet function in each scale is normalised to have unit
energy.

... (3)

... (4)

For the present analysis, it turns out that the most
revealing quantity to consider is what we shall call the
band-averaged wavelet power Rx

b (t), which is a weighted
sum of the wavelet power spectrum over a given band of
scales in the form proposed by Torrence and Compo27.

... (5)

where, sj = so2 
jδj, j = 0, 1, ..., J, and J = j log2 (Nδ t/so).

Here so = 0.5 yr as we work on yearly data. For the inter-
val δj, the largest value that still gives a resolution small
enough for wavelet power to appear smooth in time is 0.5
yr in case of the Morlet wavelet27. In the present case, we
have found it useful to choose δj = 0.25 yr in order to
obtain finer resolution in scale. The constant c

δ
 = 0.776 is

a scale-independent reconstruction factor for the Morlet
function.

It is crucial to assess the statistical significance of the
periods exhibited by the wavelet approach. The details of
the method can be found in ‘a practical guide to wavelet
analysis’27.

Hierarchical clustering
Clustering is grouping of objects based on their de-

gree of similarity. Various methods have been proposed
for data clustering in diverse scientific fields31–32. In the
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present study, hierarchical clustering was used in order
to classify correlated malaria and dengue condition in
SEAR countries. The details of the method can be found
elsewhere32–33.

RESULTS & DISCUSSION

We began by characterizing the dominant temporal
patterns present in the time-series of malaria and dengue
cases (1985–2009). We found that the burden of malaria
in SEA region was much higher than dengue in the time-
series data under study. For instance, in 2010, 1.6 million
cases of malaria were reported in India, whereas dengue
cases were 9357. The malaria epidemic is deeply rooted
in the poor communities, particularly among those living
in remote forest areas such as tribal populations. This is
the reason that there is a much higher incidence of ma-
laria than dengue in SEAR. To observe the temporal pat-
terns, the normalized data (zero mean and unit standard
deviation) of malaria and dengue cases for SEAR are plot-
ted in Fig. 1. It is clear from the Fig. 1 that during the last
decade (1999–2009), there has been a dramatic decline
in the trend of malaria, while the prevalence of dengue
fever is increasing. The decrease in malaria cases can be
attributed to the growing international awareness and
funding that has led SEAR to make new efforts towards
controlling malaria. The malaria mortality has declined
in all countries presumably due to use of artesunate com-
bination therapy (ACT), insecticide-treated mosquito nets
(ITNs), indoor-residual spraying (IRS), long-lasting in-
secticide-treated nets (LLINs), and other effective inter-
ventions. Whereas, the incidence of dengue fever shows
an increasing trend in recent years due to globalization,
population growth and uncontrolled urban development.

The Pearson’s correlation coefficient between the two
time-series is calculated as –0.63 (p <0.05). It showed
that both the diseases are inversely correlated. Figure 1
shows that the multiyear cycles of malaria outbreaks ap-
pear in the years 1986 and 1996, concomitant with the
timing of dengue cases at one year lag. Nevertheless, we
found that the correlation is higher in the last decade
(1999–2009), where the two appear to be in anti-phase
(Pearson’s correlation coefficient – 0.47). This variation
in malaria and dengue transmission is likely to depend on
environmental and socioeconomic factors.

The Pearson’s correlation coefficients between ma-
laria and dengue cases for SEAR individual countries are
shown in Table 1. To study the confidence levels of esti-
mated correlation coefficients we computed p-values to
test the confidence levels. Table 1 show that malaria and
dengue are significantly positively correlated in Indone-
sia, Myanmar and Timor-Leste, whereas malaria and den-
gue are negatively correlated in rest of the countries un-
der study.

Table 1. The cross-correlations between SEAR countries

SEAR/ Corr. coef. Corr. coef. Corr. coef. Wavelet periods Wavelet periods Wavelet periods
countries between between between between malaria between malaria between dengue

malaria malaria and dengue and dengue and ENSO and ENSO
and dengue ENSO and ENSO (Significant 95%) (Significant 95%) (Significant 95%)

SEAR –0.63 0.14 – 0.03 2–4 yr None 2–4 yr
Bangladesh –0.22 0.22 – 0.01 None None 2–4 yr
Bhutan – 0.25 0.31 0.097 None None 2–4 yr
Korea Nil – 0.18 Nil Nil None Nil
India – 0.51 0.15 – 0.18 2–4 yr None 2–4 yr
Indonesia  0.85 – 0.33 – 0.33 None None None
Maldives Nil Nil – 0.17 Nil Nil None
Nepal – 0.33 0.12 – 0.19 None None None
Myanmar 0.70 – 0.35 – 0.015 None None 2–4 yr
Sri Lanka – 0.56 0.30 – 0.15 None None None
Thailand 0.15 – 0.008 0.36 None None 2–4 yr
Timor-Leste 0.58 – 0.18 0.05 None None 2–4 yr

Fig. 1: The normalised reported cases of malaria and dengue fever in
SEAR (1985–2009).
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In order to investigate whether a more direct associa-
tion between malaria and dengue cases (in SEAR) can be
established, we present a wavelet analysis in the form of
colour-coded contour maps of wavelet power spectra as
functions of time and Fourier period (henceforth referred
to as period). Figure 2 shows the map of wavelet cross-
power spectrum between malaria and dengue cases in
SEAR. Outlined on these graphs are contours enclosing
regions where wavelet cross power is significantly higher,
at 95% confidence level with respect to the reference
spectra. It is seen that there is a high cross power in the
2–4 yr period band and it is statistically significant over
1998–2000.

The plot of the raw time-series of malaria and the
dengue cases are shown in Fig. 3. The plot exhibits a lot
of scatter for which the correlation coefficient is found to
be – 0.63 between the two raw time-series (95% confi-
dence band). To investigate the plausible presence of har-
monics in malaria and dengue cases, the 2–4 yr band-
averaged wavelet coefficients are plotted in Fig. 3 (b) for
SEAR. This, suggests that a relatively well-defined rela-
tionship between the malaria and the dengue is evident
(correlation +0.70, p <0.05) only at the shorter time scales.

In order to investigate the statistical relation of malaria
and dengue cases with ENSO in SEA region, Pearson’s
correlation coefficients between malaria and dengue, and
ENSO are listed in Table 1. The correlation coefficient
between malaria cases and ENSO in SEAR is, 0.14. If we
see these correlations in individual countries, it is positive
in Bangladesh, Bhutan, India, Nepal and Sri Lanka;
whereas, it is negative for rest of the countries under study.
On the other hand, the correlation coefficient between den-
gue cases and ENSO in SEAR is – 0.03 which goes with
the earlier work reported elsewhere33 where a negative
correlation between the ENSO indices and dengue is ob-
served in Costa Rica. If we discern these correlations in
individual countries, it is negative in Bangladesh, India,

Indonesia, Maldives, Nepal, Myanmar and Sri Lanka;
whereas, it is positive for rest of the countries under study.

Figure 4 shows the wavelet cross power spectra
of dengue-ENSO and malaria-ENSO for SEA region.
Figure 4 (a) shows that there is no significant period be-
tween malaria and ENSO in SEAR. Also, Table 1 shows
that this association is not evident in any of the individual
countries. Whereas, Fig. 4 (b) shows that the 2–4 yr pe-
riod band exhibits predominantly the highest cross wave-
let power. Hence, Fig. 4 (b) shows that there is a correla-
tion between El Niño and dengue cases in SEAR during
1985–1988 and 1999–2002. However, the power of these
cycles is more intense or statistically significant at the
95% confidence level during 1999–2002 since, it lies in-
side the ‘cone of influence’ and is therefore considered
significant. These common periods are evident in
Bangladesh, Bhutan, India, Myanmar, Thailand and
Timor-Leste as shown in Table 1. In the literature, wave-
let analysis has been performed on Thailand to establish
a relationship between dengue and ENSO which is in good
agreement with the present findings30. Therefore, ENSO
can be used as an early warning system for dengue in

Fig. 2: Wavelet cross-power spectrum of malaria and dengue cases in
SEAR.

Figs. 3 (a & b): Normalised malaria and dengue cases (a); and 2–4 yr
band-averaged wavelet power of malaria and dengue
cases (b) in SEAR.
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SEAR. Fuller et al31 have reported interesting results to
predict dengue using ENSO in Costa Rica. Their model

could be able to predict dengue outbreaks as early as 40
wk in advance31.

In the above sections we have investigated the statis-
tical association between malaria and dengue fever cases
in SEAR and individual countries. To assess distinct cross-
country links in the distribution of these epidemics and
the possible reasons behind such association, we apply a
clustering technique defined in section 2 over the time
period from 1985–2009. Figure 5 shows a dendrogram,
which clusters malaria and dengue grouping in all the
countries under study. The cophenetic coefficient calcu-
lated with the dendrogram has a reasonably high value
indicating that the cluster information generated by the
dendrogram is a good representation of similarities in the
data. The horizontal axis in Fig. 5 presents SEAR coun-
tries under study, and the vertical axis indicates separa-
tion (or 1-correlation) between them. In Fig. 5, endemic
SEAR countries are classified into distinct clusters (at 0.6
separation level), which demonstrate cross-country cross-
disease statistical classification. In cluster one, Nepal,
Thailand, Sri Lanka, Bangladesh, Bhutan and India ma-
laria cases form one homogeneous group. We now com-
pare the similar characteristics of individual countries in
this cluster. It is reported by WHO that malaria incidence
(confirmed cases) has reduced by >50% in the Nepal,
Thailand, and Sri Lanka which come together in cluster 1
in the present study. This is due to the fact that recently
there has been a renewed emphasis on malaria vector con-
trol with IRS and the countries under cluster 1 are re-
ported to have achieved 100% coverage. In fact, of the 10
malaria-endemic countries in the region, Sri Lanka has

Fig. 5: Dendrogram representing the hierarchical clustering of malaria (M) and dengue (D) cases across SEAR countries over the time period
(1985–2009); N–Nepal; Md–Maldives; T–Thailand; S–Sri Lanka; Bd–Bengladesh; B–Bhutan; I–Indonesia; In–India; K–Korea; Tl–
Timor-Leste; My–Myanmar.

Figs. 4 (a) & (b): Wavelet cross-power spectrum of; (a) malaria cases
and ENSO; and (b) dengue cases and ENSO in
SEAR.
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reached the malaria pre-elimination stage whereas two
other countries, Nepal and Thailand, have made good
progress in this direction. Figure 5 shows that Nepal and
Thailand malaria cases have minimum separation, hence
are highly synchronised (correlation coefficient 0.85) in
the cluster. Also, it comprises two neighbouring coun-
tries Bangladesh and Bhutan, where the highest reduc-
tion in malaria mortality cases were recorded by WHO.
In cluster 2, dengue in Thailand stands alone. In cluster
3, malaria in Korea and dengue in Bangladesh are highly
correlated with correlation coefficient 0.75. The remain-
ing countries under study form the cluster 4 as shown in
Fig. 5. In Indonesia, malaria and dengue cases are highly
correlated with correlation coefficient of 0.85. Similarly,
the malaria cases in Myanmar and dengue cases in Sri
Lanka  are correlated with correlation coefficient of 0.75;
Timor-Leste’s malaria cases and Maldives’ dengue case
are correlated with correlation coefficient of 0.65.

It is reported by WHO that the number of dengue
fever cases have been rising since 2003 in SEAR. Thai-
land reported the highest number of dengue cases in the
region till 2003; from 2004 onwards Indonesia reported
highest number of dengue cases in the region. In 2006,
Indonesia reported 57% of the dengue cases in the re-
gion. The three countries in cluster 4 namely, Indonesia,
Myanmar and Sri Lanka have established National Den-
gue Prevention and Control Programmes. Although In-
dia and Maldives do not have National Dengue Control
Programmes, they have undertaken vector-borne disease
control/malaria control activities for emergency control
of epidemics. These clustering showed similar patterns
among SEAR countries. However, intra-cluster similari-
ties are due to various direct and indirect factors that in-
fluence emergence of epidemic. Therefore, the biology
and ecology of vectors as well as social and socioeco-
nomic factors in different countries require to be investi-
gated in more detail to establish inter-country relation-
ships.

CONCLUSION

We investigated the statistical relation between ma-
laria and dengue cases in SEA region and its individual
countries over the time period from 1985–2009. We first
analyzed the direct association between malaria and den-
gue reported cases. The correlation coefficient between
malaria and dengue cases is – 0.63 and both the time-
series are in antiphase in the last decade. However, a rela-
tively well-defined relationship between malaria and den-
gue is evident (correlation +0.70) only at the shorter
wavelet scales. Indeed, in wavelet domain both the time-

series exhibit cross-coherence (95% statistically signifi-
cant in last decade) and the same is observed in case of
dengue and ENSO.

This study also provides statistical evidence of geo-
graphical clustering which quantitatively demonstrate the
similar situations that exist between endemic countries
across SEAR. It is concluded that malaria and dengue are
significantly positively correlated in Indonesia, Myanmar,
and Timor Leste. We also investigated that cross-country
cross-disease links, for example, malaria in Korea and
dengue in Bangladesh; malaria in Myanmar and dengue
in Sri Lanka; malaria in Timor-Leste and dengue in
Maldives are significantly correlated. Such classification
can provide guidelines for resource utilisation in integrated
control of diseases. Also, the situation of an epidemic in
various countries varies greatly from year to year. A tech-
nique like cluster analysis can be very useful in identify-
ing the long-term patterns.
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