Short Research Communications

Status of insecticide resistance in malaria vector, Anopheles culicifacies in Chhattisgarh state, India

R.M. Bhatt¹, S.N. Sharma¹, T.K. Barik² & K. Raghavendra²

¹National Institute of Malaria Research, Field Unit, Raipur; ²National Institute of Malaria Research, New Delhi, India

Key words Anopheles culicifacies; insecticide resistance; malaria; vector

Successful eradication of malaria in different parts of the world was achieved mainly by chemical insecticides for vector mosquito control¹. Generally, two types of vector control methods, namely indoor residual spraying (IRS) and long-lasting insecticide-treated nets (LNs) are used for controlling malaria transmission². Development of insecticide resistance in malaria vectors to conventionally used insecticides has been a serious impediment experienced by many vector control programmes. Therefore, monitoring of insecticide resistance and its changing trend in target species are basic requirements to rationalize its use in malaria control programme.

In Chhattisgarh state, Anopheles culicifacies (Diptera: Culicidae) is the dominant malaria vector species supported by An. fluviatilis in the hilly forested regions of the state. To date, DDT (organochlorine), and synthetic pyrethroids have been used for IRS in the national malaria control programme in the state. Continuous use of DDT for IRS since the inception of the programme has led to widespread resistance in An. culicifacies in the country³–⁵. Later, in 1970s malathion and in 1990s synthetic pyrethroids were introduced for IRS and the species developed resistance to these insecticides as well⁶⁷. The use of pyrethroids for vector control further increased as it was used in IRS and also for the treatment of mosquito nets (ITNs).

Chhattisgarh has a total population of about 25 million living in 16 districts and nearly 44% of the area is forested. Malaria is a major public health problem and the state contributes about 13% of the total malaria cases reported in the country⁸. The annual parasite incidence (API-cases/1000 population/year) during 2009 was 5.2 (Source: National Vector Borne Disease Control Programme). Due to high malaria endemicity in three southern most districts, IRS with two rounds of synthetic pyrethroids annually was introduced in the programme during mid-nineties. Rest of the districts with low (central) and high (northern) malaria endemicity continued to be sprayed with two rounds of IRS with DDT.

In the present study, susceptibility tests on An. culicifacies were carried out in 11 districts of the state. Anopheles culicifacies mosquitoes were collected from one or more villages either within the district or in the congruent 2–3 districts with similar ecotype, vector prevalence and vector control activities to assess susceptibility status to DDT, malathion and deltamethrin in the year 2009 (May, July–September and November) and 2010 (January). Female mosquitoes were collected in the early morning hours using an aspirator and a torch light⁹ from human dwellings and cattlesheds and transported to field laboratory in a cloth cage covered with a moist towel. Mosquitoes were identified to species based on morphological characters using standard identification key. mosquitoes were exposed to insecticide-treated papers of DDT (4%), malathion (5%) and deltamethrin (0.05%) procured from Vector Control Research Unit, University Sans Malaysia. After an exposure to insecticide for 1 h, mosquitoes were held for 24 h holding period at 27±2⁰C temperature and 70–80% relative humidity and percent mortality was determined. Mortality was corrected using Abbott’s formula when the mortality in control replicates was between 5 and 20%.

Tests with control mortality of >20% were discarded. The data are interpreted in three classes as per the WHO criteria for susceptibility status, namely susceptible—mortality >98 and, verification required (tolerant) – 81 and 97%, and resistant—mortality ≤ 80%¹⁰.

Results of the susceptibility tests are given in Table 1 and Fig. 1. In tests against DDT, the mortality in An. culicifacies varied from 3.2% (Kanker district) to 33.7% (Bilaspur, Korea and Korba districts). In tests against malathion, mortality varied from 39.4% (Jagdalpur district) to 73.5% (Raipur and Dhamtari districts). In tests against deltamethrin, mortality varied from 68% (Raigarh and Jashpur districts) to 98.7% (Dantewada district). Applying the WHO criteria for susceptibility status the species has developed resistance to DDT and malathion in all the districts surveyed in the present study. However,
to deltamethrin it was reported resistant in Jagdalpur, Raipur, Dhamtari and Raigarh districts11. Whereas verification was required (tolerant) in Kanker, Bilaspur, Korea and Korba districts. However, \textit{An. culicifacies} was found susceptible to deltamethrin in Dantewada district (Table 1).

Development of insecticide resistance in disease vectors was seen as a threat for the sustainability of chemical based interventions for vector control. There are about 125 mosquito species with documented resistance to one or more insecticides12. Resistance in \textit{An. culicifacies} against DDT has been reported in several parts of India3,4. About 128 fold increase in resistance to DDT was reported from Maharashtra13. In villages of Haryana, \textit{An. culicifacies} was reported susceptible to malathion14 and tolerant (VR) in Gumla district of Jharkhand15, whereas widespread resistance was recorded from Maharashtra16 Gujarat17 and Uttar Pradesh18. \textit{Anopheles culicifacies} was reported susceptible to deltamethrin in Uttar Pradesh5,18 and Gumla district of Jharkhand state15 and probably synthetic pyrethroids have not been used so far in these areas for IRS whereas in the present study, \textit{An. culicifacies} recorded 98.7\% susceptibility to deltamethrin in Dantewada district but was tolerant (VR) in Kanker district. In other districts, it was found either resistant or tolerant. Reported deltamethrin-resistance in some districts in the absence of its use in the malaria control programme needs further

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
Insecticide & District & PHC & No. of & No. exposed & No. dead in 24 h & % Mortality & Corrected \ mortality \\
& tested & & villages & Exp & Cont & Exp & Cont & (\%)
\hline
aDDT (4\%) & Dantewada & Dantewada & 5 & 82 & 40 & 21 & 7 & 25.6 & 17.5 & 9.8
& Kanker & Dhaneli Kanhar/Kapsi & 2 & 186 & 60 & 6 & 0 & 3.2 & 0 & 3.2
& Jagdalpur & Phasgaon & 3 & 100 & 30 & 21 & 1 & 21 & 3.3 & 21
& Raipur/Dhamtari & Rajim/Kareli & 4 & 99 & 48 & 4 & 0 & 4 & 0 & 4
& Bilaspur/Korba & Basti/Pali/Khadgaon & 5 & 95 & 46 & 32 & 0 & 33.7 & 0 & 33.7
\hline
bMalathion (5\%) & Dantewada & Lailunga & 10 & 60 & 30 & 6 & 0 & 10 & 0 & 10
& Kanker & Dhaneli Kanhar & 5 & 85 & 32 & 47 & 0 & 55.3 & 0 & 55.3
& Jagdalpur & Phasgaon & 2 & 216 & 73 & 150 & 0 & 69.4 & 0 & 69.4
& Raipur/Dhamtari & Rajim/Kareli & 3 & 100 & 40 & 47 & 5 & 47 & 12.5 & 39.4
& Bilaspur/Korba & Basti/Pali/Khadgaon & 4 & 98 & 41 & 72 & 0 & 73.5 & 0 & 73.5
\hline
cDeltamethrin (0.05\%) & Dantewada & Lailunga/Pathalsaon & 10 & 66 & 30 & 28 & 0 & 42.4 & 0 & 42.4
& Kanker & Dhaneli Kanhar/Kapsi & 5 & 96 & 41 & 95 & 7 & 98.9 & 17.1 & 98.7
& Jagdalpur & Phasgaon & 2 & 190 & 76 & 160 & 4 & 84.2 & 5.3 & 83.3
& Raipur/Dhamtari & Rajim/Kareli & 3 & 100 & 40 & 77 & 0 & 77 & 0 & 77
& Bilaspur/Korba & Basti/Pali & 4 & 98 & 44 & 77 & 0 & 78.6 & 0 & 78.6
& Raigarh, Jashpur & Lailunga & 10 & 75 & 30 & 51 & 0 & 68 & 0 & 68
\hline
\multicolumn{8}{l}{Exp: Test replicates; Cont: Control replicates.}
\end{tabular}
\end{table}
investigations and may be contemplated to its use in agriculture.

Development of pyrethroid resistance in An. culicifacies is of great concern for the malaria control programme in the present scenario of the prevalence of multiple insecticide-resistant vectors and the reports of pyrethroid-resistance is alarming. This is more so in view of the non-availability of new and effective insecticide molecules for the management of insecticide-resistant vectors. Since the introduction of pyrethroids in the 1980s, no new adulticide has been approved for vector control by the World Health Organization. However, we have to rely upon the presently available insecticides for the management of malaria vectors till more effective alternatives are available. Therefore, to have appropriate vector control strategies, regular monitoring of insecticide susceptibility in malaria vector is needed for effective disease vector management. The results of the present study in some districts of the Chhattisgarh state clearly indicate the changing scenario of insecticide resistance in the major malaria vector An. culicifacies.

ACKNOWLEDGEMENTS

Authors are thankful to the technical staff of the NIMR Field Unit, Raipur for helping out in mosquito collections. Financial support provided by the National Vector Borne Disease Control Programme, Delhi is gratefully acknowledged.

REFERENCES

Correspondence to: Dr R.M. Bhatt, National Institute of Malaria Research Field Unit, RLTRI Campus, Raipur- 492 015, India.
E-mail: rmbhatt@rediffmail.com

Received: 30 September 2011 Accepted in revised form: 3 February 2012