Short Research Communications

Life table analysis of *Anopheles gambiae* (Diptera: Culicidae) in relation to malaria transmission

I.K. Olayemia & A.T. Andeb

aDepartment of Biological Sciences, Federal University of Technology, Minna; bDepartment of Zoology, University of Ilorin, Ilorin, Nigeria

Key words Fecundity – instar – longevity – mosquitoes – survival rate

Malaria continues to be a major cause of morbidity and mortality in the tropics several years after the World Health Organization’s roll back malaria (RBM) initiative. The disease is responsible for an estimated one million deaths per year, mainly in pregnant women and young children under the age of five, in Africa1. In Nigeria, malaria accounts for 40–50% outpatient hospital visits, and estimates of child mortality indicate that at least 30% of Nigerian children die of malaria each year2.

though vector control has been rightly recommended for reducing the burden of malaria3, the success of the strategy in Nigeria has been hampered by inadequate knowledge of the biology of the anopheline vectors in the country. Again, most of the studies on the principal vector of the disease in Nigeria, i.e. *Anopheles gambiae* Giles (Diptera: Culicidae), are based on field ecology and behaviour of the species4–7, with very little information available on the life cycle. It has been demonstrated that life table attributes of anopheline vectors play fundamental roles in the epidemiology of malaria; attributes such as fecundity, developmental and survival rates, longevity, etc. influence vector abundance and hence, disease transmission intensity8.

To better understand baseline parameters of the life cycle of *An. gambiae*, a colony of the species was monitored under laboratory conditions, and a life table was constructed based on the developmental time of each instar and stage specific mortality.

Approximately, 120 partially engorged adult female *An. gambiae* mosquitoes, used as parental stock, were carefully collected from Ipata Market, Ilorin, Nigeria (Longitudes 4°30’ and 4°45’E and latitudes 8°25’ and 8°40’N). The mosquitoes were collected with the aid of oral aspirators9, between 1800 and 2200 hrs. Collected mosquitoes were placed in 250 ml screened beakers and maintained in a humid box overnight and subsequently transported to the laboratory the following day. After confirming the identity of the mosquitoes, using standard keys10, these were transferred to screened rearing cages (60 x 60 x 60 cm) and kept in the insectary. The mean ambient temperature and relative humidity of the insectary room were 27.33°C and 64.95%, respectively.

The mosquitoes were reared following standard techniques11. The adults were offered 10% glucose solution soaked in cotton pads daily, as a source of energy. Eggs were collected from the mosquitoes in an ovitraps by placing plastic cups (60 ml), containing well water and lined with filter papers, in the cage. The eggs were transferred from the filter papers with the aid of mounting needles into plastic bowls (5 cm height and 30 cm diam) where they were held for 24 to 72 h for hatching. Twenty-four hours after hatching, the larvae were transferred to a plastic tray (30 x 25 x 5 cm), at the rate of 50 larvae/tray for rearing. The larvae were fed with fish feed
(Tetramin®), sprinkled on the water surface. On every alternate day, the water from the culture tray was changed carefully until pupation. The pupae were separated from the larvae daily and placed in plastic bowls (5 cm height and 20 cm diam) half filled with well water. These plastic bowls with pupae were placed in adult-holding cages for emergence. Adults after emergence were offered 10% glucose solution soaked in cotton pads daily. As from two days after emergence, the females were offered an anaesthetized rabbit as a source of blood meal, and from Day 2 after blood meal, an ovitrap was placed in the adult-holding cages for the collection of eggs.

The colony was allowed to reach the third (F₃) generation prior to initiating life-table observations. Upon reaching the F₃ generation, four trays were set up with 50 first instar larvae (all larvae were within 12 h hatching period) per tray. The immature stages were reared as described for the regular colony. The trays were inspected every 12 h (i.e. 0700 and 1900 hrs) each day for dead larvae, and such were removed and noted. Also, the number of individuals transforming into the next larval instar stage was noted on daily basis, until pupation. Survival rate during the life stages was determined as the proportion of individuals at the beginning of a life stage that successfully entered the next stage while, instar duration was determined as the difference between mean age at the beginning of an instar stage and the one preceding it. Each emergent pupa was separated into a vial containing approximately 5 ml of water from their respective source. Each vial was identified 1 to 50 on a label carrying the date and time of pupation. After 72 h the vials were examined for pupal mortalities, and the number of dead pupae was noted. Mosquitoes that died in the process of emergence were also recorded as part of pupal mortality.

Upon adult emergence, the sex of the mosquito was determined and recorded along with the time of emergence. Thereafter, the adult mosquitoes were carefully pooled in adult rearing cages to a tune of approximately 50 females to 50 males, all which were within 24 h old post-emergence. The cages were examined daily for dead individuals which were removed and noted. For every dead mosquito, information regarding cage number, sex, and the date of death was recorded. A mosquito was ascertained dead if it did not respond to a prompting within a 10 min period. The adult mosquitoes were fed as described for the regular colony.

Fecundity was estimated based on the average numbers of eggs laid per female. Egg-hatching rate was estimated from the number of eggs hatched per female. Duration of the pre-adult development periods was determined by observing each pan at 0800 and 1600 hrs daily, and all larval skins were removed, scored to instar, and counted. There were four replicates for each experiment described above and the whole study was repeated twice, resulting in the monitoring of about 1600 larvae from I instar stage to adulthood.

Standard life table analysis was performed on the data. The mean pupation and eclosion times were estimated. Computation of stage-specific survivorship was according to the formula: \(\hat{S}_i = \frac{n_i}{x_{n_i-1}} \times 100 \); where, \(n_i \) is the number of larvae entering instar \(i \), and \(x_{n_i-1} \) is the number of larvae that entered the preceding instar.

Mean instar duration in days was determined using the formula: \(D_i = T_i - (t_{i-1}) \); where, \(T_i = \) Present mean age and \(t_{i-1} = \) The previous mean age at molting.

The percentage of total immature life spent in each instar was calculated as \(L_i = t_i/t_n \times 100 \), where, \(t_i = \) Duration of instar stage \(i \), and \(t_n = \) Duration of all instar stages. The expectation of life of the adult mosquitoes was determined as the interval between imago emergence and death.

The mean duration and survival rates of different immature stages of *An. gambiae* are presented in Table 1. Embryony took 1.48 ± 0.3 days while egg-hatching rate was 63.18 ± 23.94%. Mean durations of specific larval stages ranged from 1.55 ± 0.21 days.
in the first instar (L₁) to 2.84 ± 0.71 days in the IV instar (L₄). The pupal stage lasted for a mean period of 1.53 ± 0.36 days. On the average, it took 11.04 ± 2.25 days for \textit{An. gambiae} to go from egg eclosion to adult emergence. Stage-survivorship rates were estimated to be over 80\% in all larval stages, and 76.46 ± 21.35\% for the pupal stage. The overall mean survival rate from eclosion to adult emergence was 84.14\%.

The life table attributes of the adult stage are shown in Table 2. Mean fertility rate was 58.6 ± 11.36\% and the mean fecundity was 78.33 ± 31.07 eggs per female, of which only 63.18 ± 23.94\% successfully hatched into larvae. The male : female sex ratio was 1.01 : 1.24. The expectation of life for the mosquitoes after emergence was 17.19 ± 3.33 days for males and 23.10 ± 8.29 for females. Adult females began taking a blood meal approximately two days after emergence with the first batch of eggs laid five days post-adult emergence.

The life table attributes of \textit{An. gambiae} obtained in this study were similar to those reported for the species in some studies15, differed considerably from those of others3. Such differences have been attributed in part to variations in environmental conditions for larval development16. Egg-hatching rate of \textit{An. gambiae} in this study was lower than reported for \textit{An. nivipes} and \textit{An. philippinensis} in Thailand17. Also, the larval developmental time of \textit{An. gambiae}, from eclosion to adult emergence, of 11.04 days recorded in this study was shorter than the 12 to 14 days obtainable in the tropics generally9; and the mean survival rates of the life stages were generally high (>80\%). Thus, the short larval developmental time and high survival rates recorded for \textit{An. gambiae} in this study was indicative of rapid population growth, high density and potential risk for malaria transmission.

The results of this study indicate that the reproductive performance of \textit{An. gambiae} is very high, favouring rapid population growth and may thus, contribute to the success of the species for malaria transmission.
transmission. This portends great potentials for vector control in reducing the burden of malaria, as such interventions targeted at critical stages of the life cycle of the vector species will reduce the population density of the mosquito and hence, its vectorial capacity. The findings of this study will aid the development of anti-vector strategies for malaria control in Nigeria in particular and Africa in general.

Acknowledgement

We thank Dr S. Oyelekan, the Head of Biology Department, Adesoye College, Offa, Nigeria, for providing space for this study. Also, we appreciate the help received from Messrs A. Sanni and T. Obaniyi in maintaining the regular colony.

References

6. Manyi MM, Imandeh NG. The infection rates of mosquitoes with malaria and lymphatic filarial parasites in Makurdi, Benue state, Nigeria. *J Pest Dis Vector Man-

agement* 2008; 8: 464–70.

Corresponding author: Dr I.K. Olayemi, Federal University of Technology, Minna School of Science and Science Education, Department of Biological Sciences, P.M.B. 65, Minna, Niger State, Nigeria.

E-mail: kaylatiyemi@yahoo.com

Received: 9 May 2009Accepted in revised form: 2 August 2009