Impact of urbanisation on bionomics and distribution of malaria vectors in Lagos, southwestern Nigeria

I.O. Oyewole & T.S. Awolola

Abstract

Background & objectives: The patterns of annual rainfall as well as average daily temperature have not changed drastically in the study area since 1960 when detailed baseline entomological surveys were carried out. However, the increase in human population from 1.2 to 10 million has resulted in both expansion of land and tremendous ecological and environmental change. This has led to drastic changes in vectors’ densities as well as species’ composition while the preferred larval habitat of malaria vectors has shifted to water reservoirs. A longitudinal study was carried out to investigate the impact of urbanisation on bionomics and distribution of malaria vectors in Lagos, a mega city in Nigeria.

Methods: Mosquitoes were collected indoors and outdoors using WHO standard techniques in the selected areas between January and December 2000. Specimens were identified using the morphological keys and PCR assays. ELISA tests were used for Plasmodium falciparum sporozoite infection.

Results: The Anopheles gambiae species-specific PCR identified 56% (435/777) of the An. gambiae s.l. as An. gambiae s.s. and 44% (342/777) as An. arabiensis. The molecular M and S forms represented 35.3 and 64.7% of the An. gambiae s.s. population, respectively. The An. funestus species-specific PCR identified 60% (239/401) of the An. funestus group as An. funestus s.s. and 40% (162/401) as An. rivulorum. The biting activity of An. funestus s.s. both indoors and outdoors attained a peak at 0200 and 2200 hrs, respectively, with a significant increase in the “pre-bed time” collections indoors ($\chi^2 = 6.15$, df = 1, $p < 0.05$) and outdoors ($\chi^2 = 6.28$, df = 1, $p < 0.05$). The overall outdoor collection was significantly higher ($\chi^2 = 28.23$, df =3, $p < 0.05$) than that recorded indoors. The overall sporozoite rates for An. gambiae s.s., An. arabiensis and An. funestus were significantly different in both localities ($\chi^2 = 0.58$, df = 2, $p < 0.01$). Infection rates in both indoor and outdoor collections were also different statistically ($\chi^2 = 0.67$, df = 2, $p < 0.01$).

Interpretation & conclusion: Large number and species of anopheline mosquitoes collected in the study area may be associated with the availability of aquatic breeding sites. A phenomenon leading to an increase in man-vector contact and a high level of risk to the crowded urban population is observed.

Key words Anopheles mosquitoes – Nigeria – urbanisation

Introduction

About 50% of the world population lives in areas with malaria. In sub-Saharan Africa, which accounts for > 90% of the global prevalence, risk of malaria infection and morbidity are often difficult to estimate accurately due to the interplay of several epidemiological parameters. Even within a single country,
there are considerable variations in malaria epidemiology due to differences in climatic, ecological and human activities.

As in most parts of West Africa, malaria transmission in rural areas of Nigeria is generally intense, perennial and well-documented. This is not the same in urban areas where exploitation of natural resources and development activities are common phenomena. The consequences of urbanisation, deforestation and demographic growth suggest that unplanned urban growth is liable to alter the ecosystem and behaviour of vectors affecting malaria transmission.

In 1960, the first population census in Nigeria estimated the population living in Lagos to be 800,000, which surpassed 10 million in 1991. This increase in urbanisation encroached over surrounding greenland meant for agriculture. Today, most of the natural breeding sites of malaria vectors reported before have disappeared, though malaria still persists mesoendemically in Lagos. The main purpose of this study was to assess malaria infectivity in Lagos city under the impact of climatic change and urbanisation.

Material & Methods

Study area: This study was carried out in Lagos (03°54'E, 07°26'N), which lies in the forest area of Nigeria. The climate is tropical with a well-marked dry season during November to March. The rainy season extends from April to October with a short break in July.

Mosquito collection and processing: Mosquitoes were collected indoors using WHO standard techniques and supplemented with outdoor collections in the selected areas between January and December 2000. In the laboratory, anopheline mosquitoes were identified as far as possible using the morphological keys of Gillies and Coetzee and stored dry on silica gel for PCR species identification of the Anopheles gambiae complex. The involvement of each species in malaria transmission was assessed using ELISA tests for Plasmodium falciparum sporozoite infection.

PCR identification of Anopheles gambiae s.l. and Anopheles funestus group: The An. gambiae species-specific PCR was carried out using the method of Scott et al with minor modifications as detailed in van Rensburg et al, while An. funestus Giles was identified to species level using the multiplex PCR technique of Koekemoer et al.

Identification of the molecular forms in An. gambiae s.s.: The molecular M and S forms of An. gambiae s.s. were identified using the method described by Favia et al.

ELISA tests: ELISA tests for P. falciparum sporozoite infection was carried out on 792 Anopheles mosquitoes, comprising of 202 specimens of An. rivulorum and An. funestus and 75% of the respective populations of An. gambiae s.s. and An. arabiensis (selected using a random number table). Head and thorax of each mosquito was placed in PBS (pH 7.4) and tested by direct ELISA.

Results

Species composition of Anopheles mosquitoes: A total of 1178 female Anopheles mosquitoes collected consist of four species of that 554 (47%) were caught indoors and 624 (53%) outdoors. Indoor and outdoor data were pooled for analysis since there was no significant difference in the species composition or abundance of the total number of mosquitoes collected. The relative abundance of the species was expressed as the corresponding percentage of the total number of Anopheles collected (Table 1). The An. gambiae species-specific PCR identified 56% (435/777) as An. gambiae s.s. and 44% (342/777) as An. arabiensis. The molecular M and S forms of the An. gambiae s.s. represented 35.3 and 64.7% respectively. The An. funestus species-specific PCR identified
60% (239/401) of the *An. funestus* group as *An. funestus* s.s. and 40% (162/401) as *An. rivulorum*.

Biting activities of Anopheles mosquitoes: The biting activities of four species found most abundant in the overall collection were not different in two localities. Indoor and outdoor biting activities of *An. gambiae* s.s. observed throughout the night reached a peak at 0300 and 2200 hrs, respectively (Fig. 1). The biting activity of *An. funestus* s.s. both indoors and outdoors attained a peak at 0200 and 2200 hrs respectively (Fig. 2), with a significant increase in the “pre-bed time” collections (indoors: \(\chi^2 = 6.15, \text{df} = 1, p < 0.05 \); outdoors: \(\chi^2 = 6.28, \text{df} = 1, p < 0.05 \)). *Anopheles arabiensis* and *An. rivulorum* were more exophagic with more than 68 and 71% of their respective biting populations occurring outdoors respectively (Table 1). The overall outdoor collection was significantly higher (\(\chi^2 = 28.23, \text{df} = 3, p < 0.05 \)) than that recorded indoors.

P. falciparum sporozoite rates: Overall, 32 (4%) of the 792 *Anopheles* mosquitoes tested were found positive for *P. falciparum* infection. The circumsporozoite antigen (CSA) rate was 6.6% for *An. gambiae* s.s., 1.8% for *An. funestus* s.s. and 3.1% for *An. arabiensis*, and none of *An. rivulorum* specimen was found positive (Table 2). The overall sporozoite rates for *An. gambiae* s.s., *An. arabiensis* and *An. funestus* were significantly different in both localities (\(\chi^2 = 0.58, \text{df} = 2, p < 0.01 \)). Infection rates in both indoor and outdoor collections also showed statistical significance (\(\chi^2 = 0.67, \text{df} = 2, p < 0.01 \)).

Discussion

Increase in urban population has major implications for malaria epidemiology both in terms of vector population and host-vector contact leading to high frequency and dynamics of malaria transmission.

Rapid urbanisation with its consequent population explosion and increase in the number of slums in Lagos metropolis has brought about considerable changes in environmental conditions thereby creat-
ing more vector breeding sites. These changes had exerted its tolls on human health most especially on the incidence of malaria over the years. However, there is no documentation to show the effects of these ecological modifications on human health and to what extent these affect anopheline fauna in the study area.

Nevertheless, previous studies carried out in the Lagos area have documented the presence of *An. gambiae*, *An. melas* and *An. arabiensis* as major malaria vectors. Same species of anopheline mosquitoes were recorded in the recent study carried out in the coastal area of Lagos with *An. moucheti* as an additional species. In the present study, we reported the presence of *An. funestus* and *An. rivulorum* in addition to the previously documented species in Lagos area. Although, the density of these species was relatively low compared to *An. gambiae* s.s. which remained the predominant species in the study area, the peak biting period observed for *An. gambiae* s.s. and *An. arabiensis* agrees with previous records for *An. gambiae* s.l. in northern Nigeria.

Record on the distribution of the M and S molecular forms of *An. gambiae* s.s. is scanty in Nigeria, however, the difference in the proportion of the M and S molecular forms of the *An. gambiae* s.s. in the study area was significant and similar to the previous reports. *P. falciparum* circumsporozoite antigen rate recorded for *An. gambiae* s.s., *An. arabiensis* and *An. funestus* s.s., contrasts with our findings in the coastal area of Lagos where *An. gambiae* s.s. was responsible for most of malaria transmission in the wet season. Although *An. rivulorum* has been reported as a secondary malaria vector in Africa, but it appears not to be of major importance in malaria transmission in the study area.

The contribution of the three most important afrotropical malaria vectors in the study site may account for the perennial malaria transmission, compared to other parts of Nigeria where one vector species predominates and transmission is seasonal.
Conclusion

This study has a number of epidemiological implications: first, the effect of ecological changes on vector species abundance or composition may lead to high level of malaria transmission and infection. Secondly, the presence of An. funestus s.s. may indicate shift in species composition in the study area. This may have implications on control measures targeting a single species, such as genetic manipulation of An. gambiae s.s. which will have little impact on malaria infection associated with either An. funestus s.s. or An. arabiensis. Furthermore, the exophagic behaviour of An. arabiensis will make it less susceptible to residual insecticide and impregnated nets. Lastly, the peak biting periods recorded for An. funestus and An. gambiae imply that a considerable human exposure to malaria infection would have occurred before people go to bed. The results from this study further suggest the need for an integrated vector control programme that will be effective against all malaria vector species existing in the urban centres.

References

Corresponding author: Dr. T.S. Awolola, Public Health Division, Nigerian Institute of Medical Research, Lagos, Nigeria. E-mail: awololas@hotmail.com

Received: 27 March 2006 Accepted in revised form: 7 September 2006